
XOS

Programmer’s Guide

For XOS version 3.2

July, 1999

Documentation release 3.0.2

VAX/VMS is a trademark of the Digital Equipment Corporation. Unix is a trade-
mark of AT&T. Other brands and product names are trademarks or registered trade-
marks of their respective holders.

Table of Contents

Chapter 1 - Introduction . 1

Notation . 2

Chapter 2 - Structure of XOS .3
User Processes . 3

Scheduling . 4

Memory Management and Allocation5

Environment Strings .6

Devices . 8

Device Names .8
File Specifications .10

Wildcard File Specifications .11

Destination Wildcard File Specifications12

Logical Names . 12

Input/Output Operations .13

Chapter 3 - The Programming Environment15

The XOS 32-bit Environment .16

The XOS 16-bit Environment .16

The DOS 16-bit Environment .17

The DOS 32-bit Environment .17

Chapter 4 - Process Privileges .19

Chapter 5 - The Signal System .25

Stack Formats for DPMI Vectors34

Mixed-mode Stack Management .39

Table of Contents

i

Chapter 6 - Interprocess Communication41

Shared Memory . 41

Interprocess Messages .42

Events . 42

Chapter 7 - System Calls Overview .45

Chapter 8 - Utility Function System Calls47

svcSysCmos - CMOS Memory Function48

svcSysDateTime - Date and Time Functions49

svcSysDefEnv - Define Environment String57

svcSysErrMsg - Get Error Message59

svcSysFindEnv - Find Environment String60

svcSysGetEnv - Get All Environment Strings62

svcSysLoadLke - Load LKE .63

svcSysLog - Place Entry in System Log File64

Chapter 9 - Scheduler System Calls .65

svcSchAlarm - Alarm Functions .66

svcSchClrEvent - Clear Event(s) .68

svcSchCtlCDone - Report ctl-C Processing Done69

svcSchDismiss - Dismiss Signal .70

svcSchExit - Terminate Process .71

svcSchGetVector - Get Signal Vector72

svcSchIntrProc - Interrupt Child Process74

svcSchIRet - Return From Interrupt76

svcSchKill - Terminate Any Process77

svcSchMakEvent - Make Event Cluster78

svcSchRelEvent - Release Event .79

svcSchResEvent - Reserve Event .80

svcSchSetEvent - Set Event(s) .81

svcSchSetLevel - Set Signal Level82

svcSchSetVector - Set Signal Vector83

svcSchSpawn - Create Child Process85

svcSchSuspend - Suspend Process88

svcSchWaitProc - Wait for Process to Terminate90

svcSchWaitMEvent - Wait for Multiple Events91

XOS Programmer's Guide

ii

svcSchWaitSEvent - Wait for Single Event92

Chapter 10 - Memory System Calls .93

svcMemBlkAlloc - Allocate Linear Memory Block94

svcMemBlkChange - Change Size of Linear Memory Block . . .95

svcMemBlkFree - Give up All Linear Memory Blocks97

svcMemChange - Change Memory Allocation98

svcMemConvShr - Convert to Shared Section100

svcMemCopy2PM - Copy Data to Protected Mode Memory .102

svcMemCreate - Create New Segment103

svcMemDebug - Memory Debug Functions105

svcMemDescAlloc - Allocate Segment Descriptor106

svcMemDescFind - Find Segment Descriptor108

svcMemDescFree - Give Up Segment Descriptor109

svcMemDescRead - Read Segment Descriptor110

svcMemDescSet - Set Value in Segment Descriptor112

svcMemDescWrite - Write Segment Descriptor113

svcMemDosSetup - Set Up DOS Memory114

svcMemLink - Link Segment Selectors116

svcMemLinkShr - Link to Shared Section117

svcMemMap - Map Physical Section118

svcMemMove - Move Memory Section119

svcMemNull - Map Null Memory120

svcMemPageType - Change Memory Page Type121

svcMemRemove - Remove Segment122

svcMemRmvMult - Remove Multiple Segments123

svcMemSegType - Change Segment Type124

svcMemWPFunc - Watchpoint Functions125

svcMemWPSet - Set Watchpoint126

Chapter 11 - I/O Parameters .127

Common Parameters .133

Mass Storage Parameters .141

Terminal Parameters .149

Disk Parameters . 154

Tape Parameters .156

Table of Contents

iii

Network Parameters .157

Interprocess Message Parameters161

Datagram Parameters .162

svcIoRun Parameters .163

Device Class Parameter .169

Chapter 12 - Class Characteristics .171

SYSTEM Class Characteristics .175

PROCESS Class Characteristics183

DISK Class Characteristics .185

SPL Class Characteristics .187

TAPE Class Characteristics .188

TRM Class Characteristics .189

PCN Class Characteristics .190

IPM Class Characteristics .191

NULL Class Characteristics .192

PPR Class Characteristics .193

NET Class Characteristics .194

SNAP Class Characteristics .195

ARP Class Characteristics .196

IPS Class Characteristics .197

UDP Class Characteristics .198

TCP Class Characteristics .199

TLN Class Characteristics .200

RCP Class Characteristics .201

XFP Class Characteristics .202

Chapter 13 - Device Characteristics .203

DISK Device Characteristics .209

SPL Device Characteristics .226

TAPE Device Characteristics .228

TRM Device Characteristics .232

PCN Device Characteristics .250

IPM Device Characteristics .252

NULL Device Characteristics .253

PPR Device Characteristics .254

XOS Programmer's Guide

iv

NET Device Characteristics .255

SNAP Device Characteristics .263

ARP Device Characteristics .265

IPS Device Characteristics .267

UDP Device Characteristics .273

TCP Device Characteristics .276

TLN Device Characteristics .281

RCP Device Characteristics .284

XFP Device Characteristics .289

Chapter 14 - Add-Unit Characteristics293

DISK Add-Unit Characteristics .296

SPL Add-Unit Characteristics .301

TAPE Add-Unit Characteristics .302

TRM Add-Unit Characteristics .304

PCN Add-Unit Characteristics .316

IPM Add-Unit Characteristics .317

NULL Add-Unit Characteristics318

PPR Add-Unit Characteristics .319

NET Add-Unit Characteristics .320

SNAP Add-Unit Characteristics322

ARP Add-Unit Characteristics .323

IPS Add-Unit Characteristics .324

UDP Add-Unit Characteristics .325

TCP Add-Unit Characteristics .326

TLN Add-Unit Characteristics .327

RCP Add-Unit Characteristics .328

XFP Add-Unit Characteristics .329

Chapter 15 - svcIoQueue System Call .331

QAB Format . 332

Summary of svcIoQueue Functions336

QFNC_OPEN - Open Device or File338

QFNC_DEVPARM - Device Parameters345

QFNC_DEVCHAR - Device Characteristics Functions347

QFNC_DELETE - Delete File .350

Table of Contents

v

QFNC_RENAME - Rename File .351

QFNC_PATH - Path Functions .352

QFNC_CLASSFUNC - Class Functions353

QFNC_INBLOCK - Input Block356

QFNC_OUTBLOCK - Output Block357

QFNC_OUTSTRING - Output String358

QFNC_SPECIAL - Special Device Functions359

QFNC_LABEL - Read or Write Volume Label360

QFNC_COMMIT - Commit Data to Media361

QFNC_CLOSE - Close File .362

Chapter 16 - Input/Output System Calls363

svcIoCancel - Cancel I/O Request364

svcIoClose - Close Device .366

svcIoControl - I/O Request Control367

svcIoDefLog - Define Logical Name369

svcIoDelete - Delete File .371

svcIoDevParm - Get or Set Device Parameters372

svcIoDstName - Build Destination Name373

svcIoDupHandle - Duplicate Device Handle374

svcIoFindLog - Find Logical Name375

svcIoInBlock - Input Block .377

svcIoInBlockP - Input Block/Parameter List378

svcIoInSingle - Input Byte .379

svcIoInSingleP - Input Byte/Parameter List380

svcIoOpen - Open Device or file381

svcIoOutBlock - Output Block .382

svcIoOutBlockP - Output Block/Parameter List383

svcIoOutSingle - Output Byte .384

svcIoOutSingleP - Output Byte/Parameter List385

svcIoOutString - Output String386

svcIoOutStringP - Output String/Parameter List387

svcIoPath - Set Default Path .388

svcIoPorts - Control Access to I/O Ports389

svcIoRename - Rename File .390

XOS Programmer's Guide

vi

svcIoRun - Run or Load Program391

svcIoSetPos - Set I/O Position .395

svcIoWait - Wait Until I/O is Complete396

Chapter 17 - Terminal System Calls .397

svcTrmAttrib - Get or Set Display Attributes398

svcTrmCurPos - Get or Set Cursor Position399

svcTrmCurType - Get or Set Cursor Type400

svcTrmDspPage - Get or Set Current Display Page401

svcTrmFunction - General Terminal Functions402

svcTrmGetAtChr - Get Attribute and Character404

svcTrmGCurCol - Set Graphic Cursor Colors405

svcTrmGCurPat - Set Graphic Cursor Pattern406

svcTrmGCurPos - Set Graphic Cursor Position407

svcTrmLdStdFont - Load Standard Font408

svcTrmLdCusFont - Load Custom Font409

svcTrmMapScrn - Map Screen Buffer410

svcTrmSelFont - Select Font .411

svcTrmSetAtChr - Set Attribute and Character412

svcTrmSetChr - Set Character .413

svcTrmScroll - Scroll Window .414

svcTrmWrtInB - Write to Input Buffer415

Chapter 18 - Screen Symbiont System Calls417

svcScnMapBufr - Map Physical Screen Buffer418

svcScnMaskWrt - Masked Write to Screen Buffer419

svcScnTrans - Transfter Data for Screen Symbiont421

svcScnUtil - Screen Symbiont Utility Functions424

Chapter 19 - Device Dependent I/O Functions425

DISK Devices . 426

SPL Devices . 427

TAPE Devices . 428

TRM Devices . 431

PCN Devices . 432

PPR Devices . 436

NET Devices . 437

Table of Contents

vii

SNAP Devices . 438

ARP Devices . 439

IPS Devices . 440

UDP Devices . 447

TCP Devices . 448

TLN Devices . 449

RCP Devices . 450

XFP Devcies . 451

Chapter 20 - svcLoadLKE System Call .453

Appendix A - List of System Calls .457

Appendix B - System Error Codes .461

Alphabetical List of System Error Codes462

Numerical List of System Error Codes483

Index . 491

XOS Programmer's Guide

viii

Chapter 1

Introduction

This publication is intended as both an overview and detailed reference manual for
the XOS Application Program Interface (API). General programming information
is provided for the XOS operating system, as well as a complete system calls refer-
ence.

The intent of this manual is to provide a complete description of the interface be-
tween a user program and the XOS kernel. There are no secret or undocumented sys-
tem calls or functions. Although a few system calls are not intended for direct use by
user programs, they are still described here. Most of these are noted as being subject
to change in future versions of XOS. This warning should be taken seriously. Every
effort is being made to keep the overall XOS API as constant as possible and to only
make changes so that new versions will be fully backwards compatible with existing
user programs. No major changes, except in those areas indicated, are expected.

Any information missing from this manual is a result of oversight, not intent. Any
such omissions that are brought to the attention of the authors will be corrected in fu-
ture editions.

The 80386, 80486, and Pentium processors all share a common architecture.
Throughout this manual, the term “Intel 32-bit architecture” is used to refer to this
common architecture.

This manual only describes the XOS native mode API. The DOS emulation mode
API is described in the companion document, the XOS DOS/BIOS Emulation
Guide, although for most purposes any DOS or BIOS reference can be used when
working with DOS programs under XOS.

This is not an introductory text on operating systems. It is assumed that the reader
has some familiarity with computers and programming in general and with the Intel
32-bit architecture and assembly language in particular.

Introduction - Chapter 1

1

The first part of this manual provides an overview of the architecture and capabili-
ties of XOS. The remainder of the manual provides a detailed description of the sys-
tem calls used to implement this architecture. The Appendices provide lists of error
codes and other useful information.

Notation

Numeric values are specified in this manual using the C language conventions. A
value that begins with a digit 1 to 9 is a decimal value. One that begins with a 0 is an
octal value and one that begins with 0x is a hex value.

The C language conventions are also used to describe the calling sequences for the
system calls with the extended storage modifiersfar andpascalused. The modifier
far indicates that an address is a full segment:offset value. The modifierpascalused
with a function declaration indicates the function is called using the pascal calling
convention. This means that arguments are pushed on the stack in the order given
(left to right) and that the called function is responsible for removing the arguments
from the stack.

XOS Programmer's Guide

2

Chapter 2

Structure of XOS

This chapter provides a general introduction to the XOS environment.

XOS is an operating system which supports execution of multiple processes simul-
taneously. It is created for use on processors which inplement the Intel 32-bit archi-
tecture. In addition to compatibility with the DOS and PC-BIOS APIs (including
DPMI), XOS provides a native mode 32-bit API which allows access to many ad-
vanced features. This native API is described in this manual.

XOS is a protected mode operating system. It uses the processor@146s virtual-86
mode to emulate real mode operation when necessary. Whenever the term real mode
is used in this manual, it refers to the emulated real mode implemented using vir-
tual-86 mode.

User Processes

The main function provided by an operating system is to create an environment in
which programs can execute. This environment is referred to as a virtual machine.
This can be either an exact copy of the raw hardware environment provided by the
machine or it can include features not offered by the underlying hardware. XOS is
an extended virtual machine environment operating system in that it creates a virtual
machine for program execution which offers many features beyond those supported
by the CPU.

The extended virtual machine created by XOS for the execution of programs is usu-
ally referred to as a user process.

Structure of XOS - Chapter 2

3

XOS imposes very few restrictions on the structure of a user process. Generally, a
user process simply consists of the memory allocated to the process; there are no
data areas used by the system which are part of the user process. The exception is the
DOS emulator, which does set up and maintain the low memory area and the pro-
gram segment prefix (PSP). A user process consists of a single execution stream,
i.e., each process has a single program counter (PC) which specifies the next instruc-
tion to execute and a single set of processor register values. The current version of
XOS does not support multiple execution threads in a single process.

Memory is allocated to a process as one or more segments. The Intel 32-bit architec-
ture is very complex and supports a number of modes of operation. XOS provides
access to as many of these modes as is practical in a protected multi-processing envi-
ronment. Two major modes are supported: 32-bit protected mode, called native
mode, and virtual-86 mode. The 16-bit protected mode, or 286 mode, is supported as
a subset of the 32-bit protected mode. The process mode is associated with the seg-
ment from which instructions are being fetched. Usually, a process will possess only
a single type of segment: native mode, 286 mode, or virtual-86 mode, although it is
possible in special situations to create mixed mode processes which possess more
than one type of segment.

Scheduling

A multiprocessing system operating on a single CPU machine such as the PC, must
be able to share system resources effectively. All components of a machine can be
considered resources and can be grouped into several types. The first of these, and
most basic, is the CPU itself. System calls which control the sharing of the CPU are
referred to as scheduler functions. They are described in Chapter 9.

Scheduling of system processor time is done on a conventional time-slice basis us-
ing three basic priority types. Generally, the priority of a process is raised as a result
of the process receiving use of some system resource, such as the process of com-
pleting a transfer of data to or from a disk or user terminal. The priority of a process
decreases when it is compute bound, i.e., using large amounts of CPU throughput
for a period of time. The overall result of this is to give programs which are interact-
ing with a user the highest priority, disk-bound programs the next highest priority,
and compute bound programs the lowest priority. The intent of the scheduling phi-
losophy is to provide fast response to the interactive user while still providing rea-

XOS Programmer's Guide

4

sonably fair allocation of processor time among all processes without requiring a
complex and error prone tuning process to make it all work right.

Memory Management and Allocation

The Intel 32-bit architecture implements an extremely complex memory manage-
ment scheme. It is basically a combination of the traditional paged flat address space
memory model and the Intel 80286 segmented address space model. Depending on
how the system uses the CPU’s memory management functions, either model (or
both) can be implemented.

XOS supports the use of full segmented addresses with 32-bit offsets. This lets the
user program choose which way to structure memory. It can create a single segment
and treat it as a simple 32 flat address space or it can create multiple segments and
use as much of each as desired, subject of course to the restrictions on total segment
size (4GB) imposed by the CPU. XOS does not attempt to virtualize segments to get
around this limit.

When using the multi-segment scheme, the Intel 32-bit architecture is capable of
supporting two rather different memory allocation models. The first model is the
one supported by the 80286, which uses the processor’s segmentation mechanism to
manage memory. This will be called the segmented allocation model. Using this
model, each unit of memory allocated is generally assigned to a different segment,
with each segment being only as large as is needed. The second model is imple-
mented using the paged MMU. It will be referred to here as the paged allocation
model. Using this model, memory is allocated in pages, with the size of a page being
determined by the hardware. In the case of the Intel 32-bit architecture, the size of a
page is fixed at 4096 bytes. Segments are then each made up of one or more pages.

XOS can allocate memory using either allocation models. Normally, the paged is
used, but in special cases (for example, whem emulating DPMI), the segmented
model can be used also. The address of a location in memory is specified by a selec-
tor and an offset. The selector is always 16 bits in length and specifies the segment
which contains the location. The offset is 32-bits in length, but is truncated to 16-bits
when used in 286 mode. It specifies the position of the memory location in the ad-
dress space.

Pages are allocated in contiguous groups which are referred to as memory sections
or “msects”. A memory section may be allocated starting at any offset in a segment
which is an integral multiple of the size of a page (4096 bytes). It may contain any

Structure of XOS - Chapter 2

5

number of pages - up to the physical limits imposed by the hardware being used - but
it may not overlap any other memory section. There is no requirement that memory
be allocated at any particular offset in any segment. Generally, memory is not allo-
cated at a zero offset, although it can be. Leaving the first few pages of a segment
unallocated provides a good way to trap references through uninitialized pointers.

Memory can be shared between processes at the memory section level. A process
can also create memory sections which directly map physical memory. Multiple
segments can be created which reference the same physical memory. This feature is
most often used to allow a single segment to be addressed as both a data segment and
as a code segment.

XOS generally attempts to isolate the user from the underlying memory manage-
ment mechanisms as much as possible. When using the native XOS memory man-
agement functions, the user is unconcerned with the mapping of segments into a
linear address space using the segmented MMU, which is in turn mapped into physi-
cal memory using the paged MMU. XOS does also provide a set of lower level level
memory allocation functions which allow the user to directly manage allocation of
linear memory and to directly manipulate the physical segment descriptors used by
the CPU to define segments. This low level access will generally not be needed by
the user and is used mainly to implement the DPMI (DOS Protected Mode Interface)
API.

To summarize, XOS allows a program to allocate memory in whatever way and at
whatever addresses are most convenient for the program. The scheme is very flexi-
ble, allowing multiple contiguous blocks of memory in a single segment, multiple
segments, or a combination of both.

The XOS memory management system calls are described in Chapter 10.

Environment Strings

XOS provides a mechanism for associating the definition of various environment
strings with a process. An environment string is a simple string of characters associ-
ated with a name. Programs executing in the process can retrieve the string by speci-
fying its name. This is similar to the DOS environment capability, but is quite a bit
more general in that environment strings can be defined or redefined at any time,
without any restrictions on the space required to store the strings. This provides a
powerful mechanism for specifying various defaults for programs and for transfer-
ring data between programs.

XOS Programmer's Guide

6

XOS environment strings are maintained by the operating system. The environment
string definitions are stored outside of the user process@146 address space and are
accessed using system calls. Each process in the system has a private set of environ-
ment definitions which are inherited from the process’ parent when the process is
created.

Even though each process has its own private set of environment string definitions, a
process can change the definitions for other processes (privilege restrictions permit-
ting) as well as its own definitions.

When a DOS program is run under XOS, the environment string definitions are cop-
ied into a memory block in the DOS virtual machine, completely emulating DOS’s
use of environment strings. When a DOS program runs an XOS program as a result
of a DOS exec function, the XOS environment strings are initialized as specified in
the exec function.

XOS also provides a set of system level environment string definitions, which are
not directly associated with any process in the system. These definitions are used to
initialize the environment string definitions for processes created by the INIT pro-
cess. These are generally top level command processors or background programs
(often referred to as symbionts).

Normally, the environment strings defined for a session’s command processor (the
session level process) are considered to be the current set of environment strings for
the session. The SETENV command displays and modifies these definitions by de-
fault. The DOS compatible SET command always modifies these definitions.

Environment strings are typically used for a number of different purposes. The ma-
jor one is to specify permanent defaults for various programs. Since environment
string names are global to a session, there can be a problem of name conflicts if de-
faults are to be defined for many different programs. XOS has established a conven-
tion for naming environment strings used to specify defaults in order to prevent such
conflicts. The use of this convention is optional, but it is highly recommended. All
environment string names which follow this convention begin with the ^ character
and consist of three sections, separated by ^ characters as follows:

^VENDOR^PROGRAM^USAGE

where VENDOR is the name of the vendor of the program which uses the environ-
ment string. All environment strings used by XOS utilities use the vendor name
XOS. PROGRAM is the name of the program and USAGE is a descriptive name for
the individual environment string. For example, the XOS COPY command uses an
environment string ^XOS^COPY^OPT to specify default command line options.
Most XOS commands use the environment string ^XOS^GCP to specify certain

Structure of XOS - Chapter 2

7

global options (such as the level of DOS compatibility) which are of interest to all
programs.

Note that while it does not follow this convention, the XOS command processor
does use the PROMPT environment string to specify the format of the command
prompt for compatibility with DOS.

XOS does not use an environment string to specify the directories to search when
loading programs as does DOS with its PATH environment string. Instead, it uses
the logical name CMD: (which is generally defined as a search list logical). The
PATH and SET commands and the DOS environment segment created when a DOS
program is loaded use the CMD: logical definition to fake up a DOS PATH environ-
ment string for compatibility.

The XOS functions for manipulating environment strings are described in Chapter
8.

Devices

A device is generally thought of as some physical unit connected to the system
which can be used to input or output data. Disk drives, tape drives, and terminals are
some examples of such devices. XOS extends the definition of a device to also in-
clude more abstract devices. The XOS IPM device provides a mechanism for trans-
ferring data between processes. Several network devices are implemented which
provide access to various levels of the network protocol stacks, all of which use the
same physical network interface.

XOS groups devices into device classes. A device class usually consists of all de-
vices of a particular type. For example, the DISK device class consists of all random
access mass storage devices directly connected to the system. The TRM device class
consists of all terminal devices, which includes serial ports and the console display
and keyboard.

XOS accesses all devices using a common set of system calls. These system calls are
described in Chapters 15 and 16.

XOS Programmer's Guide

8

Device Names

XOS uses a 1 to 16 character alpha-numeric name to identify all devices, including
disks. The standard convention is that a device name consists of one or more letters
which identify the device class, followed by a numeric decimal unit number which
identifies the device unit within the class. This may optionally be followed by a sin-
gle letter followed by another decimal value which identifies a sub-unit. The letter is
chosen to indicate the kind of sub-unit. For example, TRM0S3 identifies virtual
screen 3 of terminal 0 and D0P2 identifies partition 2 of hard disk 0. TRM2 identi-
fies a serial port (which does not support virtual screens) and D0 identifies an indi-
vidual hard disk, independent of its partition structure.

Internally, XOS treats device names as a simple character string and does not im-
pose any structure on the name. A device driver can use any name format desired,
subject only to the requirement that it be unique in the system. All standard XOS de-
vice drivers follow the above naming conventions and it is strongly recommended
that user written drivers also follow them.

The initial alphabetic part of the name is usually derived from the device class name,
sometimes with one or more letters removed to make the name shorter to allow for
unit and sub-unit numbers, but this is not a requirement. A class driver is free to
name its devices independent of its class name. For example, the XOS DISK device
class uses D to name IDE disks, S to name SCSI disks, and F to name floppy disks.
The TRM device class, which includes the console display/keyboard and serial
ports, uses TRM to name all of its devices.

Disk class devices also each support two alternate names. The first alternate name
can be set using the device characteristics system call and is normally used to name a
disk according to the DOS disk naming conventions, i.e., as A, B, C, etc. A utility
program, DOSDRIVE, is provided which assigns the same DOS format name to
each disk in the system as would DOS. This program is normally run as part of the
XOS start up procedure.

The second alternate name is set to be the volume name of the disk, as specified by
the disk’s file structure. This feature is not used for DOS disks since they do not have
a well defined volume name. DOS disks do have a volume label, but it is often not
properly formatted for use as a device name and almost always was not chosen as a
unique name to use when referencing the disk.

The XOS disk names uniquely identify a disk unit and, where applicable, a partition.
Unlike the DOS disk names, the XOS names do not change when the system config-
uration is changed by adding or removing disks. Floppy disks are identified as Fn,

Structure of XOS - Chapter 2

9

with F0 being the DOS A and F1 being the DOS B. If a system contains additional
floppy disks, they are normally named as F2, F3, etc., although there is no restriction
that the numbers be contiguous.

IDE disks are named as Dn and DnPm and SCSI disks are named as Sn and SnPm.
The Dn and Sn format names represent an entire disk independent of its partition
structure. If adisk is not partitioned, (as is the case with some removable hard disks)
this name is also used to access the file structure on the disk. With a partitioned disk,
it is normally only used when referencing the partition table on the disk, although it
can also be used to perform raw mode reads and writes to the entire disk, independ-
ent of the disk’s partitions. The DnPm or SnPm format name represents an individ-
ual disk partition. D0P1 is the first partition on IDE disk unit 0 (the first hard disk).
This is normally the DOS disk C, although since different versions of DOS set up the
disk partition table differently, this is not always the case.

XOS attempts to assign partition numbers in the same order as DOS, but may not
succeed in all cases, especially with disks which were set up using third party disk
partitioning software. XOS first scans the partition table looking only for standard
DOS partitions (including huge partitions) and assigns these partitions numbers in
the order they are found. It then scans the partition table looking for extended DOS
partitions and assigns partition numbers to the logical volumes contained in the ex-
tended partitions in the order they are found. Finally, it scans the partition table look-
ing for any remaining non-DOS partitions and assigns partition numbers to them in
the order they are found.

XOS supports all standard DOS partition formats (12-bit, 16-bit, and 32-bit FATs)
and disks using the EZ-Drive, EZ-BIOS BIOS enhancements.

File Specifications

A file specification completely specifies an individual file on some disk in the sys-
tem or on a remote disk. It has the following general format:

DEV:NETADDR::RDEV:PATH\NAME.EXT

where DEV is the device name (as discussed above), NETADDR is an optional net-
work address (used only when DEV specifies a network device), RDEV is the re-
mote device name (also used only when DEV specifies a network device), PATH is
the directory path, NAME is the file name, and EXT is the file extension.

XOS Programmer's Guide

10

If DEV and NETADDR are not included, the device Z: is assumed. If DEV is not in-
cluded and NETADDR is included, the device NET: is assumed.

When an XOS network device is used to access files on a non-XOS remote system,
(also referred to as a foreign system) the format of the part of the file specification
following the :: is specified by the remote system. It may have any format required
by the remote system subject only to the requirement that characters which XOS
does not allow in a file specification cannot be used. One such character is / (which
is reserved as a switch/option prefix by XOS). this causes a potential problem when
accessing files on a remote UNIX system. In this case, XOS converts the \ character
to /, allowing UNIX file specifications to look much like XOS file specifications.

Note that while the XOS device drivers treat the remote part of the file specification
as an arbitrary string, some XOS utilities (such as DIR) make some assumptions
about the format of a file specification. This means that some advanced options
(such as the ... notation) may not work with all foreign systems.

XOS supports the use of multiple periods in a file specification. All characters be-
fore the last period make up the file name. All character after the last period make up
the file extension. A period is not allowed at the end of the file specification. If there
is not period in the file specification, the extension is null.

When a network device is specified, the remote device can also be a network device,
allowing any level of multiple remote access. This is generally not a desirable (effi-
cient) way to access remote files, but may be necessary in the special case where a
remote system has access to a second network to which the local system is not con-
nected and does not provide automatic routing or bridging between the networks.

Wildcard File Specifications

Most XOS system calls which take file specifications as arguments allow partially
specified or wildcard file specifications. A wildcard file specification includes one
or more of the following wildcard characters:

Character Description
? Matches any single character
* Matches any number of characters

For example, the wildcard specification A*X.ZZZ would match the names
AX.ZZZ, ABX.ZZZ, and ABCX.ZZZ. It would not match ABC.ZZZ or XA.ZZZ.

Structure of XOS - Chapter 2

11

A?X.ZZZ would match ABX.ZZZ but would not match AX.ZZZ or ABCX.ZZZ,
since the ? matches exactly one character only. The range of characters matched by a
* terminates at the period which separates the name and extension. Thus *.XY
would match any file name with the extension XY but would not match ABC.DXY.
*.*XY would match ABC.DXY, however.

Destination Wildcard File Specifications

XOS does not allow wildcards in file specifications used to specify a destination.
This includes any file which is to be created and the new name for a rename opera-
tion. Some of the XOS utilities do, however, allow a form of wildcard usage in desti-
nation specifications.

In this case, only the * wild-card character is allowed. It must appear alone in either
or both the name and extension parts. It means to copy the entire name of extension
from the source file specification.

Logical Names

XOS also supports a system of logical names. A logical name has the same format as
a device name and can be used any place that a device name can be used. It is an arbi-
trary name which is defined to be equivalent to another device name, optionally fol-
lowed by a string of characters (which normally represents a directory path).
Logical name definitions can be nested, i.e., the definition of a logical name may be
a logical name. This nesting is limited to 6 levels to make detection of definition
loops reasonably efficient.

A logical name can be substituted or assigned. An assigned logical name is a simple
alternate name for a device. The definition must be a device name only. No directory
path is allowed. When an assigned name is used, the defined name is simply substi-
tuted for the logical name. If an attempt is made to set a current directory path for an
assigned logical name, the current directory path is set for the underlying device. A
substituted name behaves like a device name in its own right. Its definition can in-
clude a directory path specification. More importantly, a current directory path can
be associated with the name, just as if it were a physical disk name. When a substi-
tuted logical name is expanded, the current directory path associated with the logical

XOS Programmer's Guide

12

name is appended to the definition of the logical name. The resulting string replaces
the logical name in the file specification.

It should be noted that XOS assigned logical names are mostly equivalent to the
DOS logical disk names created with the DOS ASSIGN command. XOS substituted
logical names are mostly equivalent to the DOS logical disk names created with the
DOS SUBST command.

A substituted logical name can be defined to represent a disk on a remote system.
This name then behaves exactly like a local disk name. For example, if we have a
file C:\SOME\WHERE\FOO.BAZ on the remote system LIZARD::, we can use the
following definitions:

LOGICAL/SUB L:=LIZARD::C:
CD L:\SOME\WHERE
TYPE L:FOO.BAZ

Alternately, we could use:

LOGICAL/SUB L:=LIZARD::C:\SOME\
CD L:\WHERE
TYPE L:FOO.BAZ

Two special logical names are built into XOS. The name Z: is used as a default de-
vice name when no device name or network address is specified. The definition of
this name thus specifies the default disk. The name NET: is used as a default device
name when only a network address is specified. Since most XOS configurations will
support only one network connection, this name will normally be defined to be the
remote file system device using that interface (usually XFP0:). In configurations
supporting more than one network connection, it is used to specify which one is the
default network connection.

Input/Output Operations

XOS supports a mixture of direct and queued IO operations. Direct IO operations
provide the same IO environment as DOS. All operations are blocking, in that exe-
cution of the program doing the IO cannot precede normally until the IO operation is
complete. In most cases signals can be granted while waiting for IO to complete and
in some cases the IO operation can be aborted by simpily executing another IO re-
quest for a signal routine. This method is often used to abort input from the control-
ling terminal. Queued IO, on the other hand, implements a tightly defined sequence

Structure of XOS - Chapter 2

13

of IO operations. IO operations, in general, are non-blocking. When a program re-
quests an IO operation, control returns immediately to the program, Execution of the
program and the IO operation then precede in parallel. If a second IO operation is
started on the same device before the first one completes, the second is queued and is
then executed automatically when the first one completes. A program can poll the
status of an IO operation, can wait until it is complete, or can requst a signal when it
is complete.

Queued IO provides a much more powerful and better defined method for doing in-
put and output. Unfortunately, its exclusive use has some undesirable side-effects,
especially when dealing with programs originally written to execute under a system
(such as DOS) which only implements direct IO. The most significant problem in-
volves attempting to abort terminal input by doing another input operation. This
simpily does not work in a queued environment. The second operation will be
queued and will wait (probably for a long time) until the first operation is complete.
This can be solved by having the program explicitly cancel the first input operation
before issueing the second request, but this requires a non=trivial change to the pro-
gram.

XOS attempts to provide the best of both worlds by supporting both methods of do-
ing IO. Not all XOS devices support both methods. Devices (like disks) whose IO
operations always complete in a short amount of time can (and do) use queued IO
for all IO operations without creating any problems for the programmer. Devices
which may not complete IO in a finite time (such as terminals) implement both
queued and direct IO operations. A few devcies (notabiliy the console display) do
not implement queued IO because all IO operations to these devices involve direct
CPU data transferes. The CPU never waits for the device to complete a data transfer.

The DOS emulator does several things to ensure that IO operations behave as ex-
pected. First, it uses direct IO whenever it is available. Second, when a device (as as
a disk) does not support direct IO, it disables signals during a device transfer so there
will be no confussion as to when and in what order operations are done. This should
not cause any major problems, since most DOS program do not use interrupts
(which are emulated using signals under XOS) and never use XOS signals directly.
A mixed DOS/XOS program should use XOS IO calls for any IO operations which
need to be interruptable by signals.

XOS Programmer's Guide

14

Chapter 3

The Programming Environment

XOS supports four different programming environments. First, it provides an envi-
ronment which closely emulates the environment provided by DOS running on an
IBM PC or compatible, including emulation of most of the BIOS functions and di-
rect hardware access commonly used by DOS programs. Second, XOS also pro-
vides a 32-bit DOS environment which supports the DPMI (DOS Protected Mode
Interface) specification. Third, the virtual-86 mode is also used to implement the
16-bit XOS environment. This environment provides access to nearly all of the ad-
vanced features of XOS from programs developed using the 16-bit development
tools designed for DOS. Finally, XOS supports a full 32-bit programming environ-
ment which provides full access to the features of the Intel 32-bit architecture, in-
cluding full access to the 45 bit memory address provided by the Intel 32-bit
architecture.

These four programming environments are not really separate from each other, al-
though it is simpler to describe them as if they are. It is most accurate to think of a hi-
erarchy of environments, with the 32-bit XOS environment at the top. A program
running in this environment can create and load code into a 16-bit virtual-86 mem-
ory segment and transfer control to this code. This 16-bit code is then running in the
16-bit XOS environment. If the appropriate data structures are set up in the first 4KB
of the virtual-86 segment and if the console display is mapped into the virtual-86
segment at the correct address and the physical BIOS ROMs are also mapped, then
the program can execute DOS and BIOS functions and can be thought of as running
in the 16-bit DOS environment. Among the functions which can be executed are the
DPMI set up functions, which set up some data structures in the process’s memory
and allocate and initialize some segment descriptors, thus creating the 32-bit DOS
environment.

This is actually a fairly accurate description of the way in which the various environ-
ments are created by XOS. Thus, the 16-bit DOS environment starts out as a 32-bit

The Programming Environment - Chapter 3

15

XOS environment, which creates a 16-bit XOS environment, which creates a 16-bit
DOS environment.

The XOS 32-bit Environment

This is the native XOS programming environment. It uses the protected mode of the
processor and supports full 32-bit offsets. Programs running in the XOS 32-bit envi-
ronment can be structured with multiple segments (each of which has a full 32-bit
address space) or with the flat memory model, which uses one code and one data
segment which map to the same physical memory, effectively converting the Intel
32-bit architecture from a segmented to a flat memory address architecture. A com-
mon varient of the flat model is one which uses two separate segments for code and
data. This is used in almost exactly the same was as the pure flat model but also auto-
matically protects all code from accidental modification by the program. It is also
possible to use a mixture of these two memory models, using what is basically a flat
model but allowing additional segments to be allocated and accessed as needed.
Most of the user mode code provided as part of XOS is written using this mixed
model.

The XOS API has been designed primarily to support the XOS 32-bit environment.
It is expected that virtually all code written specifically for XOS will be written for
this environment.

The XOS 16-bit Environment

This environment makes use of the Intel 32-bit architecture’s virtual-86 mode to em-
ulate the behavior of the 16-bit 8086 processors. The XOS native API is fully avail-
able in this environment, although the various data structures associated with the
system calls still use 48-bit address fields. The XOS 16-bit environment is provided
mainly to allow existing DOS programs access to the XOS API. While it is feasible
to write native XOS programs specifically for the 16-bit environment, there is usu-
ally no benefit to be gained by doing this.

XOS Programmer's Guide

16

The DOS 16-bit Environment

This environment also makes use of the Intel 32-bit architecture’s virtual-86 mode
to emulate the behavior of the 16-bit 8086 processors. Virtually all of the docu-
mented DOS API functions and many of the undocumented functions are imple-
mented in this environment. Also, the commonly used BIOS functions are
implemented. Direct access to the console display interface and to the keyboard in-
terface is also supported. This allows many DOS programs to run in this environ-
ment under XOS.

Any program executing in this environment can execute native XOS system calls at
any time, even though it was loaded as a DOS program.

The DOS 32-bit Environment

The DOS 32-bit environment is an extension of the DOS 16-bit environment based
on the DPMI (DOS Protected Mode Interface) specification version 0.9. It provides
a complete DOS extender which supports direct execution of almost all DOS and
BIOS functions in 32-bit protected mode. It is also compatible with programs which
implement their own DOS extenders using the DPMI functions.

It should be noted that DOS 32-bit programs are always initially loaded as 16-bit
programs which switch to the 32-bit environment during initialization.

Any program executing in this environment can execute native XOS 32-bit function
calls at any time, even though it was loaded as a DOS DPMI program.

The Programming Environment - Chapter 3

17

Chapter 4

Process Privileges

This chapter describes the privileges which may be associated with a process. A
privilege is a named item which grants a process certain rights to access information
or perform a function. When a process is created, it is given a list of available privi-
leges. Any privilege in this list can then be made current by the process by setting the
value of the CURPRIV PROCESS class characteristic to include that privilege (see
Chapter 12). Privileges can be removed from the list of available privileges by
changing the value of the AVLPRIV PROCESS class characteristic, but no privi-
leges that are not in the list of available privileges can be added once the process has
been created. If an available privilege is removed, itcannotbe put back later.

Note that if the user login feature is not used, each top level
(command shell) process created is given all possible privileges
as both current and available privileges.

Privileges are specified as a list with the elements separated by + or - characters. If
the first character in the list is + or -, the list represents an incremental specification,
and the privileges listed are added or removed for the process, depending on the
character before each privilege name. Thus the list:

+ALLIO-BYPASS

would add the ALLIO privilege and remove the BYPASS privilege. If the first char-
acter is not + or -, the list is an absolute list and the privileges listed replace the cur-
rent privileges. In this case, all of the separator characters must be +. Any privilege
preceded by - is ignored. All changes to the privileges (either current or available)
are made considering the restrictions listed above. Thus, privileges specified as cur-
rent privileges are effectively anded with the available privileges. Privileges speci-
fied as available privileges are anded with the previous available privileges.

Process Privileges - Chapter 4

19

Most programs require no more than the IPM privilege to execute correctly. Privi-
leges provide access to critical parts of the system and are very powerful and there-
fore should not be granted to processes unless absolutely necessary.

Table 4.1 contains a summary of the process privileges.

Figure 4.1 - Process privileges
Name Description

ADMIN System administrator privileges

ALLIO May do restricted I/O operations

ALLPROC May kill or interrupt any process

BYPASS Bypass all file access checking

CHNGUSER May change user name

DETACH May detach process

IPM May send IPM messages to other processes

LKELOAD May execute LKE load functions

MEMLOCK May lock memory pages in place

NEWSES May create new process group

NOSWAP May lock memory pages in memory

OPER Operator privileges

READALL Bypass file read access checking

READKER May read kernel memory

READPHYS May read physical memory

SCREENSYM May execute screen symbiont functions

SESENV May change group level environment strings

SHAREDEV May share any device

SPCUSER May specify user for acesss checking

SYSENV May change system level environment strings

SYSLOG May change system level logical names

USESYS Access files using system protection

WRITEKER May write kernel memory

WRITEPHYS May write physical memory

Below is a detailed description of the process privileges.

XOS Programmer's Guide

20

ADMIN = System administrator privileges

This privilege allows various functions associated with managing the sys-
tem. Among these are setting the system date and time and allocating disk
buffers. This is one of the most powerful privileges. Normal programs
should not be executed when it is in effect.

ALLIO = May do restricted I/O operations

This privilege allows restricted I/O operations. This includes directly read-
ing and writing disk blocks and other operations at this level.

ALLPROC = May kill or interrupt any process

This privilege allows the process to use the svcIoKill system call to kill
any process in the system, not just child processes of the process issuing
the svcIoKill system call.

BYPASS = Bypass all file access checking

When this privilege is in effect, ALL file access privilege checking is
by-passed. This allows complete read and write access to all files on the
system.

CHNGUSER = May change user name

When this privilege is in effect, the process can change its user and group
names at will.

DETACH = May detach process

When this privilege is in effect, the process is allowed to detach from its
controlling terminal.

IPM = May send IPM messages to other processes

This privilege allows the process to send messages to other processes us-
ing the IPM device. This privilege will be in effect for most processes.

LKELOAD = May execute LKE load functions

When this privilege is in effect, the process can execute the
svcSysLoadLke system call, which is used to load loadable kernel exten-
sions (LKEs).

MEMLOCK = May lock memory pages in place

This privilege is not implemented yet.

Process Privileges - Chapter 4

21

NEWSES = May create new session

When this privilege is in effect, a process can create a child process which
is the base process for a new session.

NOSWAP = May lock memory pages in memory

This privilege is not implemented yet.

OPER = Operator privileges

This privilege is not implemented yet.

READALL = Bypass file read access checking

When this privilege is in effect, all file system privilege checks for read
accesses are by-passed. Privilege checking for write accesses is un-
changed.

READKER = May read kernel memory

When this privilege is in effect, the process can use the svcMemLink sys-
tem call to link to exec with read only access.

READPHYS = May read physical memory

When this privilege is in effect, the process can use the svcMemMap sys-
tem call to map physical memory into its address space for read only ac-
cess.

SCREENSYM = May execute screen symbiont functions

When this privilege is in effect, the process can execute the screen
symbiont system calls. Normally, only the process running the screen
symbiont will have this privilege.

SESENV = May change session level environment strings

When this privilege is in effect, the process can modify environment
strings defined at the session level.

SHAREDEV = May share any device

When this privilege is in effect, the process can obtain shared access to
any device, even if the device is in use by a different session and does not
normally allow such sharing.

XOS Programmer's Guide

22

SPCUSER = May specify user for acesss checking

When this privilege is in effect, the IOPAR_USER to specify the user
name to be used for access checks and IOPAR_ACSNETWK IO parame-
ters may be used to specify that the network access protection class should
be used. This privilege is intended to be used by network file servers.

SYSENV = May change system level environment strings

When this privilege is in effect, the process can modify environment
strings defined at the system level.

SYSLOG = May change system level logical names

When this privilege is in effect, the process can modify logical names de-
fined at the system level.

USESYS = Access files using system protection

When this privilege is in effect, all file access checking is done using the
system access level.

WRITEKER = May write kernel memory

When this privilege is in effect, the process can use the svcMemLink sys-
tem call to link to exec with read/write access.

WRITEPHYS = May write physical memory

When this privilege is in effect, the process can use the svcMemMap sys-
tem call to map physical memory into its address space for read/write ac-
cess.

Process Privileges - Chapter 4

23

Chapter 5

The Signal System

The XOS signal system closely parallels theinterrupt systems implemented at the
hardware level for most computers. The termsignalis used here instead ofinterrupt
to attempt to minimize the confusion caused by the misuse of the wordinterrupt
when referring to the Intel 32-bit architecture. The wordinterrupt usually refers to
an asynchronous event which causes a change in program execution. When discuss-
ing the Intel architecture, the wordinterrupt is also used when describing the INT
instruction, which should really be described as causing atrap. A trap is a change in
program execution (much like a subroutine call) which is caused by the processor it-
self, not by an external event.

The termsignalis used unambiguously in the Unix and other environments to refer
to a true externally causedinterrupt. It is used the same way here. Synchronous or
processor generatedinterruptsare referred to astraps.

A signal or trap causes the current execution state to be saved and control to be
transferred to a specific address when some event occurs. This allows the program
to take whatever action is necessary to respond to the event and then to return to
whatever it was doing before the event occurred. Each possible event is assigned to a
vector. A vector specifies the address to which control is transferred, the format in
which the current execution state is saved (referred to as the vector’s type), and a pri-
ority level.

The XOS signal system is a fully prioritized system. At any time, a process is exe-
cuting at some priority level. When asignal is requested, the level associated with
the signal’s vector is compared to the level of the process. If the vector’s level is
higher than the level of the process, thesignalis granted and the level of the process
is set to the level of the vector. The process stays at this level until a higher levelsig-
nal is granted or until thissignalis dismissed, at which time the previous level is re-
stored. If the level of the vector is the same or lower than the current level of the
process, thesignalrequest is held off and not granted until the level of the process is

The Signal System - Chapter 5

25

reduced below the level of the vector. A special case occurs if the vector’s level is
the highest possible level. In this case, thesignalis granted immediately, even if the
process is already at this level.

Traps operate much like signals except that they are not level sensitive. Atrap al-
ways occurs when requested, regardless of the process’ current level. It does not
change the level of the process.

Eight priority levels are defined for signals: levels 0 through 7. Level 0 is the main
program level, where most programs execute. Signals are fully nested, with level 7
having the highest priority and beingnon-maskable; that is, it caninterrupt itself.
Signals may be disabled entirely by setting thesignallevel to a value of 8 or higher.

XOS separates the vectors used for processor traps from the vectors used by the INT
instruction and external events. If the vector or a real modetrap is not set and the
corresponding real mode vector (obtained by subtracting 0x120 from the vector
number of the processortrap) is set, the real mode vector is used. This provides
compatibility with 16-bit DOS programs which do not know about the special pro-
cessortrap vectors. 32-bit DOS programs use the processortrap vectors directly
through the use of the DPMI set exception vector functions.

Table 5.1 summarizes the general vector groups.

Table 5.1 - Vector Groups
Range (dec.) Range (hex) Description
0-255 0-0xFF Protected mode signals or traps
256-287 0x100-0x11F Protected mode processor traps
288-319 0x120-0x13F Real mode processor traps
320-351 0x140-0x15F XOS pre-assigned signals and traps
352-511 0x160-0x1FF Reserved
512-767 0x200-0x2FF Real mode signals or traps

The protected mode signals and traps (0-0xFF) are the usual 256 protected mode
vectors provided by the Intel 32-bit hardware. It should be noted, however, that the
first 32 vectors (0-0x1F) are not used as processortrap vectors. These first 32 vec-
tors can be used for signals or INT instruction vectors.

Vectors 0x100 through 0x11F are the protected mode processortrap vectors. These
vectors are used when the corresponding processor exception occurs in protected
mode. They cannot be invoked using the INT instruction. If a processortrap occurs
and the corresponding vector is set to type VT_NONE, or to the default vector, the
process is terminated. These vectors are summarized in Table 5.2.

XOS Programmer's Guide

26

Table 5.2 - Protected mode processor trap vectors
Name Number

(dec)
Number
(hex)

Description

VECT_PDIVERR 256 0x100 Divide error trap
VECT_PDEBUG 257 0x101 Debug trap
VECT_PNMI 258 0x102 Non-maskable interrupt
VECT_PBRKPNT 259 0x103 Breakpoint trap
VECT_PINTO 260 0x104 INTO instruction trap
VECT_PBOUND 261 0x105 BOUND instruction trap
VECT_PILLINS 262 0x106 Illegal instruction trap
VECT_PFPPNAVL 263 0x107 FPP not available trap
VECT_PDBLEXP 264 0x108 Double exception trap
VECT_PFPPSOVR 265 0x109 FPP segment overrun trap
VECT_PITSS 266 0x10A Invalid task state segment

trap
VECT_PSEGNP 267 0x10B Segment not present trap
VECT_PSTKERR 268 0x10C Stack error trap
VECT_PPROT 269 0x10D General protection trap
VECT_PPAGEFLT 270 0x10E Page fault trap

271 0x10F Reserved
VECT_PFPUERR 272 0x110 FPP error trap
VECT_PALNCHK 273 0x111 Alignment error trap

274-287 0x112-0x11F Reserved

Vectors 0x120 through 0x13F are the real mode processortrap vectors. These vec-
tors are used when the corresponding processor exception occurs in real mode. They
cannot be invoked using the INT instruction. If a processortrap occurs and the cor-
responding vector is set to type VT_NONE, the process is terminated. If the corre-
sponding vector is set to the default vector and a DOS environment exists, the
corresponding real mode vector is used if it is set. Otherwise the process is termi-
nated. These vectors are summarized in Table 5.3.

Table 5.3 - Real mode processor trap vectors
Name Number

(dec)
Number
(hex)

Description

VECT_RDIVERR 288 0x120 Divide error trap
VECT_RDEBUG 289 0x121 Debug trap
VECT_RNMI 290 0x122 Non-maskable interrupt
VECT_RBRKPNT 291 0x123 Breakpoint trap
VECT_RINTO 292 0x124 INTO instruction trap
VECT_RBOUND 293 0x125 BOUND instruction trap
VECT_RILLINS 294 0x126 Illegal instruction trap

The Signal System - Chapter 5

27

Table 5.3 - Real mode processor trap vectors
Name Number

(dec)
Number
(hex)

Description

VECT_RFPPNAVL 295 0x127 FPP not available trap
VECT_RDBLEXP 296 0x128 Double exception trap
VECT_RFPPSOVR 297 0x129 FPP segment overrun trap
VECT_RITSS 298 0x12A Invalid task state segment trap
VECT_RSEGNP 299 0x12B Segment not Present
VECT_RSTKERR 300 0x12C Stack error trap
VECT_RPROT 301 0x12D General protection trap
VECT_RPAGEFLT 302 0x12E Page fault trap

303 0x12F Reserved
VECT_RFPUERR 304 0x130 FPP error trap
VECT_RALNCHK 305 0x131 Alignment error trap

306-319 0x132-0x13F Reserved

Vectors 0x140 through 0x15F are the XOS pre-assignedsignal andtrap vectors.
These vectors are used when the corresponding condition occurs. If the vector type
is VT_NONE or if it is set to the default vector, the default action is taken. These
vectors are summarized in Table 5.4.

Table 5.4 - XOS pre-assigned vectors
Name Number

(dec)
Number
(hex)

Description

VECT_EXIT 320 0x140 XOS process termination trap
VECT_CHILD 321 0x141 XOS child died interrupt
VECT_CNTC 322 0x142 XOS control-C interrupt
VECT_CNTP 323 0x143 XOS control-P interrupt
VECT_HNGUP 324 0x144 XOS terminal hung up interrupt

325-511 0x145-0x1FF Reserved

Vectors 0x200 through 0x2FF are the real mode vectors. These vectors only exist
when a DOS real mode environment exists. The contents of these vectors is stored in
the first 1024 bytes of the real mode segment in the normal real mode hardware for-
mat. They can be set either by using the XOS svcSetVector function, the DOS INT
21h, function 35h call, or by directly storing a value into the vector. When a process
exception occurs in real mode and the corresponding real mode processtrap vector
is not set, then the corresponding real mode vector is used. These vectors are used
directly when an INT instruction is executed in real mode. Since these vectors only
exist when a DOS environment exists, this implies that INT instructions can only be
used in real mode when a DOS environment exists. An attempt to use one of these
vectors when a DOS environment does not exist will terminate the process.

XOS Programmer's Guide

28

Vectors 0 to 0x15F each have a type. Table 5.5 lists the vector types.

Table 5.5 - Vector types
Name Val Dismiss instruction Lvl Description

VT_NONE 0 Vector is not in use

VT_XOSS 1 CALLF svcSchDismiss n XOS signal vector

VT_XOST 2 CALLF svcSchDismiss n XOS trap vector

VT_HWS16 3 IRET 4 16-bit hardware signal vector

VT_HWS32 4 IRET 4 32-bit hardware signal vector

VT_HWT16 5 IRET 4 16-bit hardware trap vector

VT_HWT32 6 IRET 4 32-bit hardware trap vector

VT_DPMI16O 7 RET 4 DPMI version 0.9 16-bit trap vector

VT_DPMI32O 8 RET 4 DPMI version 0.9 32-bit trap vector

VT_DPMI16N 9 RET 4 DPMI version 1.0 16-bit trap vector

VT_DPMI32N 10 RET 4 DPMI version 1.0 32-bit trap vector

The Dismiss Instruction column specifies the instruction which is used to return
from or dismiss asignalor trap for the vector type indicated. The Lvl column speci-
fies the level associated with the vector. Note that the XOS vectors have settable lev-
els but that all other vectors have a fixed level of 4.

Each vector is indicated as being either atrapvector or asignalvector. This refers to
the way the vector affects the priority level of the process when it is used. It does not
mean that only traps or signals can be handled by the vector. Any vector type can be
used for either signals or traps.

Vectors indicated astrap vectors do not change thesignallevel of the process when
asignalor trap is granted. The level of the vector is used, however, in determining
when to grant asignal. Vectors indicated assignalvectors set the level of the process
to the vector’s level (except that the level of the process is never decreased as the re-
sult of granting asignalor trap) when asignalor trap is granted. Traps are always
granted immediately, independent of the vector type, even if the level of the process
is greater than the vector’s level.

The following explains how asignalis handled. Auser process normally executes at
main programlevel, or level 0. When asignaloccurs, XOS saves the process’ state
(its current program counter and status register, and optionally, some register val-
ues) onto the process’ stack in the format associated with the vector’s type. If the
vector is an XOS vector, XOS may push one or more words ofinterrupt data onto
the process’stack, depending on the source of thesignal. XOS sets the signal level to

The Signal System - Chapter 5

29

that of the signaling event and continues execution at the address appearing in the
vector. It is the responsibility of the usersignalroutine to preserve all registers. For
some vector types (but not for all) the segment registers are saved on the user’s stack
before thesignalroutine is called. After thesignalhas been serviced and before the
usersignalroutine returns, it restores registers. Then it executes the appropriate in-
struction to dismiss theinterrupt (given in Table 5.2), causing XOS to restore the
user program counter and status register and to discard anyinterrupt data from the
stack. Restoring the status register restores the previoussignal level as well as the
condition bits.

The format of the data stored on the stack varies depending on the type of the vector
and, for some vector types, the processor modes of the interrupted code and of the
signalroutine. In some cases it is necessary to store the address of a specialdismiss
routinewhen the instruction, which will be used by the user program to return from
thesignalor trap routine, is not capable of fully restoring the previous state of the
process. In the following descriptions, the wordsavedis used to indicate items
which represent the actual saved state of the process and the worddismissis used to
indicate items which specify the special dismiss routine. In general, user programs
can freely change thesaveditems to modify the process which will be restored. The
dismissitems shouldNEVER be modified by the user program.

The following sections describe thesignalandtrap stack formats in detail.

Stack Formats for XOS Vectors

All XOS vectors generate the same stack format independent of the modes of the in-
terrupted code and of thesignalroutine, except that the orginal SS and original ESP
values are only present when switching from protected to real mode or from real
mode to protected mode. The stack items are always 32 bits, even if interrupting real
mode code to a real modesignalroutine. The number of data items present depend
on the source of thesignal. It may be 0.

The EFR value stored in the XOS format stack frame is similar to the 80386 hard-
ware EFR value. It is modified slightly to include thesignallevel, which is stored in
the bits which contain the nested task flag and the I/Oprivilege level in the hardware
EFR value. This is shown below. Theinterruptenable bit (IF) is used as the comple-
ment of the 4th bit of thesignallevel. This results in its having its usual function of
enabling signals (interrupts) when set. (This works sincesignallevels of 8 or greater
indicate that signals are disabled.) For additional information on the use of the EFR

XOS Programmer's Guide

30

bits when dismissing signals or interrupts, see the discussion of the svcSchDismiss
and svcSchIRet system calls in Chapter 9. The format of the EFR is shown below.

0 0 0 0 0 0 0 0 0 0 0 0 0A V R 0 SIL O D I T S Z 0 A 0 P 1 C
V M F F F F F F F F F F

This format for the EFR value is used in both 16-bit and 32-bit XOS stack frames.

The format of the XOS stack frame is show below.

Offset High order word Low order word

(36+(4*N)) Not used Saved SS

(32+(4*N)) Saved ESP

(28+(4*N)) Nth data item

(24+(4*N)) N-1th data item

36 ...

32 1st data item

28 Signal number Number of data items

24 Saved EFR

20 Not used Saved CS

16 Saved EPC

12 Not used Saved DS

8 Not used Saved ES

4 Not used Saved FS

0 Not used Saved GS

The saved SS and saved ESP items are only present when switching between pro-
tected and real modes. The number of data items (each item is 4 bytes) depends on
the source of thetrap or signaland may be between 0 and 32. Note that, unlike the
other stack frame formats, the values for the segment registers are always present,
even if no mode switch occurs.

Stack Formats for Hardware Vectors

Different stack formats are used for hardware vectors depending on the mode of the
interrupted code and the mode of thesignalor trap routine.

The FR value used is almost identical to the 80386 EFR value. Theinterruptenable
bit (IF) reflects the state of the emulated hardwareinterrupt system. Since in real

The Signal System - Chapter 5

31

mode hardware interrupts are implemented as level 4 signals, the IF bit is the com-
plement of bit 2 of thesignal level. When an IRET instruction is executed in real
mode, this bit is used to restore bit 2 of thesignallevel only. The other bits of thesig-
nal level are not changed. This allows programs which are aware of the XOSsignal
system to run in a DOS environment with DOS programs (such as debuggers) which
only know about hardware interrupts without conflicts. See the discussion of the
svcSchDismiss and svcSchIRet system call in Chapter 9 for a more information
about how thissignallevel is restored when dismissing asignalor interrupt. The un-
used bits in the EFR emulate the behavior of the 80386 EFR. The FR is the low order
16 bits of the EFR. This is summarized below.

0 0 0 0 0 0 0 0 0 0 0 0 0A V R 0 0 0 0 O D I T S Z 0 A 0 P 1 C
V M F F F F F F F F F F

If thesignalroutine is in a 32-bit protected mode segment and the interrupted code is
16 or 32-bit protected mode code, the following stack format is generated:

Offset High order word Low order word

8 Saved EFR

4 Not used Saved CS

0 Saved EIP

Note that this is the same as the 80386 32-bit hardwareinterruptstack format.If the
signalroutine is 32-bit protected mode code and

the interrupted code is real mode, the following stack format is used:

Offset High order word Low order word

28 Not used Saved SS

24 Saved ESP

20 Saved EFR

16 Not used Saved CS

12 Saved EIP

8 Dismiss EFR

4 Not used Dismiss CS

0 Dismiss EIP

It is necesary to store the address of a special dismiss routine as the address to which
theinterrupt routine returns since it will normally return with an IRET instruction,
which will not switch to real mode when executed in user mode.

XOS Programmer's Guide

32

If the signalroutine is 16-bit protected mode code and the interrupted code is also
16-bit protected mode code, the following stack format is used:

Offset Word

4 Saved FR

2 Saved CS

0 Saved IP

Note that this is the same as the 80386 16-bit hardwareinterrupt stack format.

If the signalroutine is 16-bit protected mode code and the interrupted code is either
real mode or 32-bit protected mode code, the following stack format is used. The
saved GS, FS, DS, ES, SS and ESP values are only present if the interrupted code is
real mode.

Offset High order word Low order word

38 Not used Saved GS

34 Not used Saved FS

30 Not used Saved DS

26 Not used Saved ES

28 Not used Saved SS

24 Saved ESP

20 Saved EFR

16 Not used Saved CS

12 Saved EIP

8 Dismiss EFR

4 Not used Dismiss CS

0 Dismiss EIP

If the interrupt routine is real mode code and the interrupted code is either 16 or
32-bit protected mode, the following stack frame format is used.

The Signal System - Chapter 5

33

Offset High order word Low order word

38 Not used Saved GS

34 Not used Saved FS

30 Not used Saved DS

26 Not used Saved ES

22 Not used Saved SS

18 Saved ESP

14 Saved EFR

10 Not used Saved CS

6 Saved EIP

4 Dismiss FR

2 Dismiss CS

0 Dismiss IP

The first 3 words on the stack provide a standard real-mode hardwareinterruptstack
frame which points to a real mode dismiss routine which calls the svcSchIRet func-
tion to actually return to the interrupted code.

Stack Formats for DPMI Vectors

The DPMI vector types are provided mainly for use by the XOS DPMI emulation
routines. While they can be specified directly by user programs, there should gener-
ally be no need to do this. It is strongly recommended that user programs use either
XOS or hardware type vectors in all cases. The stack frames produced for DPMI
vectors are the stack frames defined in the DPMI specifications. They are only valid
for protected modesignalor trap routines. DPMI only uses these vector types for
processor traps. XOS does not restrict their use in this way, but there should be no
reason to use them in other ways.

DPMI version 0.9 stack frames are only valid for interrupts from protected mode
code to protected modetrap routines. Since DPMI version 0.9 does not support a
mixture of 16 and 32-bit protected mode code, it is also not possible to have a differ-
ent width for thetrap routine than for the interrupted code. If an attempt is made to
use a DPMI version 0.9 vector other than in this way, the process will be terminated
with a TC_BADSTK termination code.

The error code stored in the DPMI stack frame is only valid when used with the
VECT_RSEGNP and VECT_RPROT vectors. In these cases it gives the selector

XOS Programmer's Guide

34

which caused the error as reported by the underlying hardware exception. For all
other vectors the value stored in this field is undefined and should be ignored.

The stack frame format for a 16-bit DPMI version 0.9 stack frame is shown below.

Offset Word

14 Saved SS

12 Saved SP

10 Saved FR

8 Saved CS

6 Saved IP

4 Error code

2 Return CS

0 Return IP

The stack frame format for a 32-bit DPMI version 0.9 stack frame is shown below.

Offset High order word Low order word

28 Not used Saved SS *

24 Saved ESP

20 Saved EFR

16 Not used Saved CS

12 Saved EIP

8 Error code

4 Not used Return CS

0 Return EPC

XOS also implements the DPMI version 1.0 stack frames. These stack frames are
not used by the current version of the XOS DPMI emulator, since it only supports
DPMI version 0.9. It is expected that a future version of the XOS DPMI emulator
will use these vectors.

The format of the DPMI version 1.0 stack frame is somewhat unusual in that it con-
sists of a version 0.9 stack frame with an second, extended stack frame stored above
it. This allows programs to use either stack frame, and, in theory, allows mixing of
version 0.9 and version 1.0interrupthandlers in the same program.

The format of the 16-bit DPMI version 1.0 stack frame is show below.

The Signal System - Chapter 5

35

Offset High order word Low order word

84 PTE value

80 CR2 value

76 Not used Original GS *

72 Not used Original FS *

68 Not used Original DS *

64 Not used Original ES *

60 Not used Original SS

56 Saved ESP

52 Saved EFR

48 Exception bits Saved CS

44 Saved EPC

40 Error code

36 Not used Return CS

32 Return EIP

28 Not used

24 Not used

20 Not used

16 Not used

12 Version 0.9 saved SS Version 0.9 saved SP

8 Version 0.9 saved FR Version 0.9 saved CS

4 Version 0.9 saved IP Version 0.9 error code

0 Version 0.9 return CS Version 0.9 return IP

XOS Programmer's Guide

36

The format of the 32-bit DPMI version 1.0 stack frame is shown below.

Offset High order word Low order word

84 PTE value

80 CR2 value

76 Not used Original GS *

72 Not used Original FS *

68 Not used Original DS *

64 Not used Original ES *

60 Not used Original SS

56 Saved ESP

52 Saved EFR

48 Exception bits Saved CS

44 Saved EPC

40 Error code

36 Not used Return CS

32 Return EIP

28 Not used

24 Version 0.9 saved ESP

20 Version 0.9 saved EFR

16 Not used Version 0.9 saved CS

12 Version 0.9 saved EIP

8 Version 0.9 error code

4 Not used Version 0.9 return CS

0 Version 0.9 return EPC

Emulated Hardware Interrupts

Certain hardware interrupts are emulated using signals. This includes the interrupts
for the system clock (IRQ1), the keyboard (IRQ2), and the serial ports (interruptre-
quest is assignable). XOS assumes that all vectors used for emulated hardware inter-
rupts have a level of 4. Separate logic emulates the operation of the standard
interrupt controllers within that single priority level.

Most programs which use the emulated hardware interrupts will be DOS programs
using hardware type vectors, which always have a level of 4. If native XOS pro-

The Signal System - Chapter 5

37

grams set up the vectors associated with devices to be XOS type vectors, the level
must be set to 4. If this is not done, interrupts may be lost or the process may hang.

When asignalor trap is granted using an XOS typeinterrupt vector, the process’
level is set directly to the level of the vector, except that the process’ level is never
decreased in granting atrap. (It will not be decreased when granting asignalbe-
cause of the operation of the priority system.)

When asignalor trap is granted using a hardware typeinterruptvector, only bit 2 of
the level of the process is changed. This behavior is summarized in the following ta-
ble:

Level before signal Level after signal

0 4

1 5

2 6

3 7

This somewhat unusual behavior is implemented to allow for the combined use of
emulated hardware interrupts and XOS type signals. If a DOS program is also using
XOS type vectors for signals, it can control the interaction between the emulated
hardware interrupts and the XOS type signals by assigning levels to the XOS type
vectors that are either below or above 4. If the XOS vectors have levels less than 4,
the XOS signals will be held off when DOS interrupts are disabled, but the act of dis-
abling and re-enabling the DOS interrupts will not change the priority level as seen
by the XOS vectors. (It must be remembered that not only is only bit 4 changed
when the emulated hardwareinterrupt is granted, but also only bit 4 is changed
when the emulated hardware interrupt is dismissed using the IRET instruction.)
Thus, if the process is at level 2 ,for example, servicing an XOSsignaland an emu-
lated hardwareinterrupt is granted, the level will be raised to 6. When the emulated
hardwareinterrupt is dismissed with an IRET instruction, the level will return to 2,
since only bit 2 is changed.

This would be much more straight-forward if it were possible to simply save and re-
store the level of the process across the emulated hardwareinterrupt, but this cannot
be done since there is only one bit available in the FR to indicate theinterruptstate.
Trying to use additional bits is extremely failure prone, since many DOS programs
count on the exact behavior of the hardware when processing interrupts.

This somewhat convoluted scheme allows the two environments to coexist in al-
most all cases.

XOS Programmer's Guide

38

Mixed-mode Stack Management

The following discussion of mixed mode stack management is complex and can be
ignored by most users of XOS. Most user written code executes in a single mode.
Code written for the DPMI environment is the major exception to this. The rules for
stack management for DPMI which are stated in the DPMI specification also apply
under XOS. This section explains the underlying mechanism which XOS uses for
mixed mode stack managment.

The term mixed-mode refers to an environment which includes both real mode and
protected mode code. It does notrefer to environments which include both 16-bit
and 32-bit protected mode code. The rules for mixing 16-bit and 32-bit protected
mode code are described in detail in the Intel documentation for the 80386/80486
CPU chips. These rules apply equally well for code executing under XOS. In gen-
eral, XOS does not provide explicit support for mixing 16-bit and 32-bit code except
that signals and traps always save the process state in such a way that the orginal
state can be exactly restored in all cases. The problems of mapping 32-bit addresses
to 16-bit addresses are not directly addressed by XOS.

XOS does fully support the mixing of real mode and protected mode (either 16-bit
or 32-bit) code. This creates some special problems relating to management of the
program stack. A protected mode stack pointer is not valid in real mode and a real
mode stack pointer is not valid in protected mode. While it is always possible to cre-
ate a protected mode stack pointer that addresses a real mode stack, the reverse is not
always possible. In particular, if the protected mode stack is not in the real mode
memory segment (and, in general, it will not be) it cannot be accessed at all by real
mode code.

This problem is solved by using separate stacks for real mode and protected mode
operation. When a switch is made from real mode to protected mode or vice versa,
the stack pointer for the old mode is saved on the stack for the new mode and the
stack pointer is changed to point to the stack for the new mode. It should be noted
that the only way that this mode switch can occur is by the granting of asignalor
trap or by the execution of an svcSchDismiss or svcSchIRet system call. When a
signalor trap is granted, the stack pointer for the old mode is automatically saved on
the new stack. It is not saved directly by the svcSchDismiss or svcSchIRet system
calls. If a program uses one of these calls to change modes by explicitly constructing
a return frame, then the program must separately save the old stack pointer if it is to
be restored later.

When an svcSchDismiss or svcSchIRet system call which causes a mode switch is
executed, the stack pointer for the old mode is stored internally by XOS. When

The Signal System - Chapter 5

39

switching back to the original mode, it is used to re-establish the stack for that mode.
This allows unlimited switching between modes, with the stack growing as needed.

When an XOS process is initially created, it only consists of a protected mode part
and thus has only a protected mode stack. If a real mode memory segment is created,
a special 4KB stack section is also created at the real mode address 0EC00:0. The
initial real mode stack pointer is set to use this stack. If the protected mode part ex-
plicitly changes the real mode stack pointer to use a different stack (the usual case),
the original stack is not used directly. This special stack section is used when mode
switching and there is no user specified stack available. This happens most often
when switching to protected mode to execute the user level protected mode code
which implements much of the DOS emulator. Note that this stack segment is not
used for the DPMIlocked protected mode stack, but an additional memory page is
allocated for this purpose when DPMI is initialized.

Even though XOS does everything it can to make stack switching when changing
modes transparent, a user program which includes code executing in both real and
protected modes generally must be aware of how the two stacks are being handled
and must insure that no conflicts occur. This is especially true for mixed mode pro-
grams which make heavy use of signals and traps which cause mode switches. Any
time a user program explicitly specifies a stack pointer value for the other mode, ex-
treme care must be taken to insure that no conflicts are created.

XOS Programmer's Guide

40

Chapter 6

Interprocess Communication

XOS provides three independent mechanisms for communication between pro-
cesses:

Shared memory

Interprocess messages

Events

These three methods are described in this chapter.

Shared Memory

An XOS process can convert part of its memory to a named shared memory section
which can then be accessed by name by other processes. Each process accessing the
shared section can map it at its orignal virtual address or at any addres it desires. Ac-
cess is controlled by a owner/group/world scheme similar to that used with may file
systems.

A program running in a DOS environment can also access shared memory. The un-
used upper memory area is initially mapped to null memory. This can be given up
and the address space can then be used to map shared memory. DOS 32-bit pro-
grams can freely map shared memory sections by using the standard XOS system
calls.

The system calls for creating and accessing shared memory sections are described in
chapter 10.

Interprocess Communication - Chapter 6

41

Interprocess Messages

Interprocess messages provide another means for the exchange of a resonable
amount of data between processes. Interprocess messages are implemented using a
device (IPM) which uses the same system calls as all other devices. It is a datagram
device, in that no connections are established to other processes, but each message is
addressed independently. It operates much like the UDP network device. Each input
or output system call receives or sends one message.

Messages can be addressed to a process (using its process ID) or to a named message
destination. A process can set up to receive messages for as many named destina-
tions as needed. Named destinations are global in the system and are generally used
by servers to allow access by general clients.

To establish a named destination, a process opens an IPM device specifying the des-
tination name using the normal file name syntax. Thus to estabish the named desti-
nation “IPMTEST”, the string “IPM:IPMTEST” would be used for the device
name. Using the device name “IPM:” opens an unnamed IPM device which receives
messages directed to the process’s process ID. A process can open at most one un-
named IPM device.

When an IPM message is output, it is queued to the destination process. If the pro-
cess (or named destination) does not exist at the time the output is done, an error is
returned. If the destination process terminates without inputting the message, how-
ever, the message is lost with no indication to the sender. Thus for most applications,
it is desirable to use an application level protocol to acknowlege messages.

The content of IPM messages is not restricted in any way by XOS. Information
about the sender of the message is obtained using device parameters rather than a
header which is part of the message. Most XOS utilities which use interprocess mes-
sages use the first two bytes to specify a message type and sub-type, but this is not
necessary, as long as the sender and receiver agree on the format of the message.

Events

Events provide yet another mechanism for communication between processes. An
even is a simple data item which can hold a 32-bit value. When the value is 0, the
event is considered to be “cleared”. When the value is other than 0, the event is con-
sidered to be “set”. Events are organized as event clusters. Each event cluster con-

XOS Programmer's Guide

42

tains between 1 and 31 events. Event clusters are named with an arbitary text string
and events within a cluster are numbered. The name-space for event clusters is local
to the process which created the event cluster, but is globalably available on the sys-
tem. This means that an event is completely identified by a PID, an event cluster
name, and an event number.

When a process creates an event cluster it can associate a signal vector which each
event in the cluster. Asignal will be posted to the process whenever one of the events
is “set” (its value changes from 0 to non-0). Aprocess can also wait until one or more
of the events in a cluster has been set.

Any process can set (specify a non-0 value for) an event created by any process, but
a process can only wait for, be signaled by, or clear (set to 0) events which is has cre-
ated.

Events are normally used to signal another process that some action needs to be
taken. They are often used in conjuction with a shared memory section. An event
would be used to indicate to a process that data has been changed in a shared mem-
ory section that that process needs to handle.

Interprocess Communication - Chapter 6

43

Chapter 7

System Calls Overview

Each system call is described in a standard format, with no more than one system
call per page. The format for each function is specified as a C function prototype
declaration. A description of the function is provided, and a description of the value
returned. An example is included for reference.

Calling Conventions

All XOS system calls are implemented as procedures which are called using the
Pascal calling convention. The system calling convention is identical for virtual and
native modes except as noted below. All arguments are first pushed onto the stack,
with the first argument being pushed first. All arguments are 32-bit numeric or
64-bit address values. The procedure is then called using a far call instruction. The
arguments are removed from the stack by the called procedure. This implies that the
exact number of parameters specified must be pushed onto the stack for each system
call or unspecified behavior will result.

Memory Addressing

Native mode addresses are always passed as full far addresses, with the selector part
of the address pushed onto the stack first as a 32-bit value. Only the low order
16-bits of this value are used. The offset part of the address is next pushed onto the
stack as a 32-bit value with all bits being used. Virtual mode addresses are also
passed as two 32-bit values but in a different format. The first 32-bit value pushed
onto the stack is a dummy value which is not used and which must be 0. The second

System Calls Overview - Chapter 7

45

32-bit value is the full 32-bit virtual mode far address; the high order 16-bits contain
the selector part and the low order 16-bits contain the offset part of the address.

Any native mode address with an offset value of 0 is considered to be a NULL ad-
dress, even if the selector part is not 0. This convention is used to make the coding of
system calls easier in programs which generally use only near pointers to specify ad-
dresses. A virtual mode address is considered to be a NULL address only when both
the selector and offset parts are 0. A native mode address must not be specified with
a NULL selector and a non-NULL offset value, as this will be interpeted as a vir-
tual-mode address.

Return Value

All system calls return a 32-bit value. This value is returned in the EAX register. In
virtual mode, the high order 16-bits of the value are also returned in the DX register.
No other registers (except the stack pointer to remove arguments from the stack) are
changed by a system call. A successful return from a system call always returns a
positive value. An error is indicated by a negative return value, with the value being
a standard error code (see Chapter 2 for definition of the error codes).

Header files

An XOSSVC.H header file is provided which define C prototypes for the system
calls.

XOS Programmer's Guide

46

Chapter 8

Utility Function System Calls

This chapter describes the utility function system calls. These are the functions
which do not naturally fall into any of the other classes of system calls. This includes
functions to find and define environment strings, functions which deal with dates
and times, functions to access the system’s CMOS non-volatile memory, a function
to generate standard error messages, and finally, a function which loads loadable
kernel extensions (LKEs).

Utility Function System Calls - Chapter 8

47

svcSysCmos - CMOS Memory Function

svcSysCmos

CALLING SEQUENCE:

XOSSVC svcSysCmos(long address, long data);

VALUE RETURNED:

Returns the 8-bit value read or written, zero extended to 32-bits if normal
or a negative error code if an error occurred.

DESCRIPTION:

This system call reads or writes a location in the system@146s CMOS
memory, the non-volatile configuration memory. Theaddressargument
specifies the CMOS memory address to access. Thedataargument speci-
fies the function and the data to write if this is a write function. A 32-bit
value of -1 specifies a read function. The contents of the CMOS location
(8 bits) specified byaddressis zero extended to 32 bits and returned as the
value of the system call. If the value ofdata is not -1, the call is a write
function. The low 8 bits of the value are written into the CMOS location
specified byaddress. The value written, zero extended to 32-bits, is re-
turned as the value of the system call.

EXAMPLES:

XOS Programmer's Guide
svcSysCmos - CMOS Memory Function

48

svcSysDateTime - Date and Time Functions

svcSysDateTime

CALLING SEQUENCE:

XOSSVC svcSysDateTime(long func, void far *data);

VALUE RETURNED:

Returns 0 if normal or a negative error code if an error occurred.

HEADER FILE:

These functions are defined in the XOSTIME.H header file.

DESCRIPTION:

This system call implements various functions having to do with obtain-
ing, setting, and converting date and time values. These functions are
specified by the value of the argumentfunc and are summarized in Table
8.1. The argumentdata is a pointer to a data block, the exact format of
which depends on the function.

Utility Function System Calls - Chapter 8
svcSysDateTime - Date and Time Functions

49

Table 8.1 - Date/time functions
Name Value Description
T_GTXDTTM 1 Get system date and time in XOS format
T_GTDDTTM 2 Get system date and time in DOS format
T_GTXDTTMTZ 3 Get system date, time, and time-zone in XOS format
T_GTDDTTMTZ 4 Get system data, time, and time-zone in DOS format
T_GTPETIM 6 Get process elapsed time
T_GTSETIM 7 Get session elapsed time
T_GTPCTIM 8 Get process CPU time
T_CVD2X 9 Convert DOS to XOS date and time
T_CVX2D 10 Convert date and time from XOS to DOS format
T_GTHRDTTM 11 Get system high-resolution date and time in XOS for-

mat
T_GTHRPETIM 12 Get process high-resolution elapsed time in XOS for-

mat
T_GTHRSETIM 13 Get session high-resolution elapsed time in XOS for-

mat
T_GTHRDTTMT
Z

14 Get system high-resolution date, time, and time-zone in
XOS format

T_GTRDTTM 15 Get RTC date and time (requires ADMIN privilege)
T_STXDTTM 16 Set system date and time (requires ADMIN privilege)
T_STRDTTM 17 Set RTC date and time (requires ADMIN privilege)
T_GTTZINFO 18 Get time zone information
T_STTZINFO 19 Set time zone information (requires ADMIN privilege)

Following is a detailed description of each of these functions

T_GTXDTTM - Get system date and time in XOS format
This function returns the current system date and time in XOS for-
mat. The XOS date/time format (which is specified by the C typedef
name time_s) consists of a structure containing two 32 bit values as
shown in Table 8.2. The first value gives the time of day in fractional
days. This is a 32-bit unsigned binary fraction with the binary point
to the left of the left-most (high order) bit. Thus a value of
0x40000000 would represent 6 AM, 0x80000000 would represent
noon, 0xC0000000 would represent 6 PM, etc. The second 32-bit
value gives the date as the number of days since the beginning of the
year 1500.

XOS Programmer's Guide
svcSysDateTime - Date and Time Functions

50

Table 8.2 - XOS date/time format
Element name Offset Size Description

time 0 4 Time (fractional days)

date 4 4 Date (days since 1600)

The data argument points to a time_s structure which receives the
date/time value.
The value returned by this function is only accurate to about 1/50
second. A more accurate value can be obtained by using the
T_GTHRDTTM function. Since this function has significantly less
overhead, it should be used unless the greater accuracy is necessary.

T_GTXDTTMTZ - Get system date, time, and time-zone in XOS for-
mat

This function returns the current system date and time in XOS for-
mat. The XOS date/time/time-zone format (which is specified by the
C typedef name time_sz) consists of a structure containing two 32 bit
values as shown in Table 8.2. The first value gives the time of day in
fractional days. This is a 32-bit unsigned binary fraction with the bi-
nary point to the left of the left-most (high order) bit. Thus a value of
0x40000000 would represent 6 AM, 0x80000000 would represent
noon, 0xC0000000 would represent 6 PM, etc. The second 32-bit
value gives the date as the number of days since the beginning of the
year 1500.

Table 8.3 - XOS date/time/time-zone format
Element name Offset Size Description

time 0 4 Time (fractional days)

date 4 4 Date (days since 1600)

tzone 8 2 Offset from GMT (in minutes)

dlst 10 2 Daylight savings time offset (in
minutes)

The data argument points to a time_s structure which receives the
date/time value.
The value returned by this function is only accurate to about 1/50
second. A more accurate value can be obtained by using the
T_GTHRDTTMTZ function. Since this function has significantly
less overhead, it should be used unless the greater accuracy is neces-
sary.

Utility Function System Calls - Chapter 8
svcSysDateTime - Date and Time Functions

51

T_GTDDTTM - Get system date and time in DOS format
This function returns the current system date and time in DOS for-
mat. The DOS date/time format consists of a structure (which is
specified by the C typedef name time_d) containing the fully broken
down date and time values as shown in Table 8.4.

Table 8.4 - DOS date/time format
Element name Offset Size Range Description

tmx_msec 0 2 0-999 Milliseconds

tmx_sec 2 2 0-59 Seconds

tmx_min 4 2 0-59 Minutes

tmx_hour 6 2 0-23 Hours

tmx_mday 8 2 1-31 Day of the month

tmx_mon 10 2 1-12 Month

tmx_year 12 2 1600- Year

tmx_wday 14 2 0-6 Day of the week

tmx_yday 16 2 0-365 Day of the year

Thedataargument points to a time_d structure which receives the
date/time value.

T_GTDDTTMTZ - Get system date, time, and time-zone in DOS
format

This function returns the current system date, time, and time-zone in
DOS format. The DOS date/time/time-zone format consists of a
structure (which is specified by the C typedef name time_dz) con-
taining the fully broken down date and time values as shown in Table
8.5.

XOS Programmer's Guide
svcSysDateTime - Date and Time Functions

52

Table 8.5 - DOS date/time/time-zone format
Element name Offset Size Range Description

tmx_msec 0 2 0-999 Milliseconds

tmx_sec 2 2 0-59 Seconds

tmx_min 4 2 0-59 Minutes

tmx_hour 6 2 0-23 Hours

tmx_mday 8 2 1-31 Day of the month

tmx_mon 10 2 1-12 Month

tmx_year 12 2 1600- Year

tmx_wday 14 2 0-6 Day of the week

tmx_yday 16 2 0-365 Day of the year

tmx_tzone 18 2 0-1339 Offset from GMT
(in minutes)

tmx_dlst 20 2 0-60 Daylight savings
time offset (in min-
utes)0

Thedataargument points to a time_dz structure which receives the
date/time value.

T_GTPETIM - Get process elapsed time
This function returns the elapsed time since the process was created.
The data argument points to a time_t structure (XOS format date and
time) which receives the value, which is stored as an incremental
XOS date/time value consisting of days and fractional days.
The value returned by this function is only accurate to about 1/50
second. A more accurate value can be obtained by using the
T_GTHRPETIM function. Since this function has significantly less
overhead, it should be used unless the greater accuracy is necessary.

T_GTSETIM - Get session elapsed time
This function returns the elapsed time for all processes in the current
session since the session was created. Thedataargument points to a
time_t structure (XOS format date and time) which receives the
value, which is stored as an incremental XOS date/time value con-
sisting of days and fractional days.
The value returned by this function is only accurate to about 1/50
second. A more accurate value can be obtained by using the
T_GTHRSETIM function. Since this function has significantly less
overhead, it should be used unless the greater accuracy is necessary.

Utility Function System Calls - Chapter 8
svcSysDateTime - Date and Time Functions

53

T_GTPCTIM - Get process CPU time
This function returns the total CPU time for the current process. The
data argument points to a time_t structure (XOS format date and
time) which receives the value, which is stored as an incremental
XOS date/time value consisting of days and fractional days. In this
format, the least significant bit of the fractional days part represents
slightly over 20 microsec.

T_CVD2X - Convert DOS to XOS date and time
This function converts a DOS format(time_d) date and time value to
an XOS format (time_t) date and time value. Thedata argument
points to a time_x structure, which consists of a time_t structure fol-
lowed immediately by a time_d structure. The time_t structure must
contain the XOS format date and time value to convert. The DOS
format time_d value is written to the time_d structure.

T_CVX2D - Convert date and time to DOS format
This functions converts an XOS format (time_t) date and time value
to a DOS format (time_d) date and time value. Thedataargument
points to a time_x structure, which consists of a time_t structure fol-
lowed immediately by a time_d structure. The time_d structure must
contain the DOS format date and time value to convert. The XOS
format time_t value is written to the time_t structure.

T_GTHRDTTM - Get system high-resolution date and time in XOS
format

This function is the same as the T_GTXTDTM function except that
the time is returned accurate to about 30 microseconds instead of
1/50 second.

T_GTHRPETIM - Get process high-resolution elapsed time in XOS
format

This function is the same as the T_GTPETIM function except that
the time is returned accurate to about 30 microseconds instead of
1/50 second.

T_GTHRSETIM - Get session high-resolution elapsed time in XOS
format

This function is the same as the T_GTSETIM function except that
the time is returned accurate to about 30 microseconds instead of
1/50 second.

XOS Programmer's Guide
svcSysDateTime - Date and Time Functions

54

T_GTHRDTTMTZ - Get system high-resolution date, time, and
time-zone in XOS format

This function is the same as the T_GTXTDTMTZ function except
that the time is returned accurate to about 30 microseconds instead of
1/50 second.

T_GTRTIM - Get RTC date and time (requires ADMIN privilege)
This function gets the date and time from the real-time clock in DOS
format (broken down values). Thedataargument points to a time_d
structure which receives the value.

T_STXTIM - Set system date and time (requires ADMIN privilege)
This function sets the current system date and time. Thedataargu-
ment points to a time_t structure (XOS format date and time) which
must contain the new date and time for the system.

T_STRTIM - Set RTC date and time (requires ADMIN privilege)
This function sets the real-time clock (RTC) date and time. Thedata
argument points to a time_d structure (DOS format broken down
date and time) which must contain the new date and time for the
real-time clock. Note that this function does not change the system
date and time.

T_GTTZINFO - Get time zone information
This function returns data which defines the system’s time-zone.
This data is specified in a structure which is described in table 8.6.
specified by the C typedef name time_d) containing the fully broken
down date and time values as shown in Table 8.4.

Utility Function System Calls - Chapter 8
svcSysDateTime - Date and Time Functions

55

Table 8.6 - Time-zone information
Element name Offset Size Description

tzone 0 4 Offset from GMT (in minutes)

begintime 4 4 Time of day when daylight sav-
ings time begines (in fractional
days)

beginday 8 4 Day of the year when daylight
savings time begins

endtime 12 4 Time of day when daylight sav-
ings time ends (in fractional days)

endday 16 4 Day of the year when daylight
savings time ends

offset 20 4 Daylight savings time offset (in
minutes)

Note that the offset value is valid, even if daylight savings time is not
in effect.
Thedataargument points to a structure which receives the time-zone
information information.

T_STTZINFO - Set time zone information (requires ADMIN privi-
lege)

This function sets the time-zone data for the system. It uses the same
data structure as specified in table 8.6. All values from the structure
are used to set the system’s values.

XOS Programmer's Guide
svcSysDateTime - Date and Time Functions

56

svcSysDefEnv - Define Environment String

svcSysDefEnv

CALLING SEQUENCE:

XOSSVC svcSysDefEnv(long proc, char far *str, char far *def);

VALUE RETURNED:

The value returned is 0 if normal or a negative error code if an error oc-
curred.

DESCRIPTION:

The environment string whose name is specified by the argumentstr (a
null terminated string up to 128 bytes in length) is defined to have the
value specifed by the argumentdef (a null terminated string up to 512
bytes in length). The name of an environment is not case sensitive. XOS
internally converts all name characters to upper case. The definition is
case sensitive. Characters are stored exactly as given. Any character ex-
cept for null can be included in the definition string.

The environment string is defined for the process specified by the argu-
mentproc. The meaning of theproc argument is specified by bits 14 and
15 as summarized below.

Name Bit Description
FES$SESSION 15 Set to specify level relative to session process
FES$PROC 14 Set to specify level relative to current process
FES$SYSTEM 15, 14 Set to specify system level

When both of these bits are 0, the remainder of the 32-bit value specifies a
process ID. Bits 31 to 16 specify the sequence number part of the ID and
bits 13 to 0 specify the process number part of the ID. A value of zero for
both the sequence number and process number parts specifies the process
issuing the system call.

If bits 14 and 15 are both 1, the remaining bits are ignored. This indicates
a system level definition, which is not directly associated with any pro-
cess, but with the system as a whole. The system level environment strings
are copied as the initial environment strings when a new process is created
by INIT.

Utility Function System Calls - Chapter 8
svcSysDefEnv - Define Environment String

57

If bit 15 is 1 and bit 14 is 0, then bits 7 to 0 specify the offset below the
session process. A value of 0 specifies the session process itself. A value
of 1 specifies the child of the session process which is in the direct line of
inheritance to the process issuing the system call. A value of 2 specifies
that process’ child, etc. This format can only specify processes down to the
process issuing the system call.

If bit 15 is 0 and bit 14 is 1, then bits 7 to 0 specify the offset above the
process issuing the system call. A value of 0 specifies the process itself, a
value of 1 specifies its parent, etc. This format can only specify processes
up to and including the session process.

A general discussion of XOS environment strings is given in Chapter 2.

EXAMPLES:

XOS Programmer's Guide
svcSysDefEnv - Define Environment String

58

svcSysErrMsg - Get Error Message

svcSysErrMsg

CALLING SEQUENCE:

XOSSVC svcSysErrMsg(long code, long format, void far *buffer);

VALUE RETURNED:

Will return 0 or a negative error code if an error occurred.

DESCRIPTION:

This system call generates a standard error message given an error code
value. The argumentcodespecifies the error code for which the message
should be generated. The argumentstr specifies the elements to include in
the generated message. It is bit encoded as follows:

Name Bit Description
EM$TEXT 0 Include error text
EM$CODE 1 Include error code in braces

2-31 Not used

The argumentbufferspecifies the address of the buffer to receive the mes-
sage. This buffer must be in writable memory and be at least 80 bytes
long.

EXAMPLES:

Utility Function System Calls - Chapter 8
svcSysErrMsg - Get Error Message

59

svcSysFindEnv - Find Environment String

svcSysFindEnv

CALLING SEQUENCE:

XOSSVC svcSysFindEnv(long proc, char far *search, char far *name, char far
*buffer, long length, long far *skip);

VALUE RETURNED:

The value returned is the length of the string stored in the buffer specified
by thebuffer argument if normal or a negative error code if an error oc-
curred.

DESCRIPTION:

This system call searches for an environment string. The name of the envi-
ronment string to be found is specified as a string whose address is given
by thesearchargument (a null terminated string). It may contain wild-card
characters . The number of names to skip before checking for a match is
specified by the 32-bit value whose address is given by theskipargument.
This value is updated when a match is found so that another call will find
the next matching name.

Environment strings can be defined for every process in the system and for
the system itself. Generally, a process only searches its own environment
strings; however, it can search those of any other process in the system,
privileges permitting.

The proc argument specifies the process level to search. The meaning of
this argument is specified by bits 14 and 15 as summarized below.

Name Bit Description
FES$SESSION 15 Set to specify level relative to session process
FES$PROC 14 Set to specify level relative to current process
FES$SYSTEM 15, 14 Set to specify system level

When both of these bits are 0, the remainder of the 32-bit value specifies a
process ID. Bits 31 to 16 specify the sequence number part of the ID and
bits 13 to 0 specify the process number part of the ID. A value of zero for
both the sequence number and process number parts specifies the process
issuing the system call.

XOS Programmer's Guide
svcSysFindEnv - Find Environment String

60

If bits 14 and 15 are both 1, the remaining bits are ignored. This indicates
system level environment strings, which are not directly associated with
any process, but with the system as a whole. The system level environ-
ment strings are copied as the initial environment strings when a new pro-
cess is created by INIT.

If bit 15 is 1 and bit 14 is 0, then bits 7 to 0 specify the offset below the
session process. A value of 0 specifies the session process itself. A value
of 1 specifies the child of the session process which is in the direct line of
inheritance to the process issuing the system call. A value of 2 specifies
that process’, child, etc. This format can only specify processes down to
the process issuing the system call.

If bit 15 is 0 and bit 14 is 1, then bits 7 to 0 specify the offset above the
process issuing the system call. A value of 0 specifies the process itself, a
value of 1 specifies its parent, etc. This format can only specify processes
up to and including the session process.

The matching name found is returned in the buffer whose address is given
by thenameargument. This buffer must be at least 129 bytes long to allow
for a maximum length environment string name of 128 bytes plus a final
null character. The definition of the environment string is returned in the
buffer whose address is given by thebufferargument and whose length is
given by thelengthargument. If the definition will not fit in the buffer, the
final two characters stored are RUBOUT (0xFF) followed by a null
(0x00). Otherwise the definition is stored in the buffer followed by a null.
A buffer length of at least 64 bytes is recommended; a buffer length of 513
bytes will contain the longest possible environment string plus a terminat-
ing null character.

A general discussion of XOS environment strings is given in Chapter 2.

EXAMPLES:

Utility Function System Calls - Chapter 8
svcSysFindEnv - Find Environment String

61

svcSysGetEnv - Get All Environment Strings

svcSysFindEnv

CALLING SEQUENCE:

XOSSVC svcSysGetEnv(long proc, char far *buffer, long length);

VALUE RETURNED:

The value returned is the length of the string stored in the buffer specified
by thebuffer argument if normal or a negative error code if an error oc-
curred.

DESCRIPTION:

This system call returns all environment string defined for a process. Each
string is stored as a null terminated string in the format:

envname=envstring

The next string starts in the byte immediately following the terminating
null.

The process is specified by the proc argument, which has the same mean-
ing as for the svcSysFindEnv and svcSysDefEnv system calls.

This system call is intended mainly to be used when setting up a DOS
enviroment, but it can be used by any user program if desired.

XOS Programmer's Guide
svcSysGetEnv - Get All Environment Strings

62

svcSysLoadLke - Load LKE

svcSysLoadLke

CALLING SEQUENCE:

XOSSVC svcSysLoadLke(struct lkedata *lkedata);

VALUE RETURNED:

Returns 0 if normal or a negative error code if an error occurred.

DESCRIPTION

This system call loads an LKE (Loadable Kernel Extension). The se-
quence involved and the argument block are somewhat complex and are
explained in detail in Chapter 20. Generally, a user program should not at-
tempt to use this function directly. It is intended exclusively for the use of
the LKELOAD utility. The details of the operation of this system call may
change significantly in future versions of XOS.

EXAMPLES:

Utility Function System Calls - Chapter 8
svcSysLoadLke - Load LKE

63

svcSysLog - Place Entry in System Log File

svcSysLog

CALLING SEQUENCE:

XOSSVC svcSysLog(char *msg, long length);

VALUE RETURNED:

Returns 0 if normal or a negative error code if an error occurred.

DESCRIPTION:

The text string pointed to by msg containing length characters is written to
the system log file. The first two characters in the message are not used,
but must be present.

EXAMPLES:

XOS Programmer's Guide
svcSysLog - Place Entry in System Log File

64

Chapter 9

Scheduler System Calls

The scheduler system calls are those which control the creation, termination, or
scheduling of user processes. They are described in this chapter.

Scheduler System Calls - Chapter 9

65

svcSchAlarm - Alarm Functions

svcSchAlarm

CALLING SEQUENCE:

XOSSVC svcSchAlarm(long func, long handle, long vector, time_t datetime);

VALUE RETURNED:

Returns an alarm handle or 0 (depending on the function) if normal or a
negative error code if an error occurred.

DESCRIPTION:

This system call creates or removes alarms. An alarm requests a signal af-
ter a specified interval has passed or at a specified time. The possible func-
tion argument values are summarized in Table 9.1.

Table 9.1 - Alarm interrupt function values
Name Value Function
TIF_REMOVE 1 Remove alarm
TIF_DATETIM
E

2 Request alarm interrupt at specified date and
time

TIF_INTERVAL 3 Request alarm interrupt after specified interval
TIF_REPEAT 4 Request clock interrupt at specified interval

(repeated)

Thevectorargument specifies the vector to be used for the alarm signal. It
MUST be set up (with the svcSetVector system call) before this system
call is issued.

The TIF_DISABLE function removes an alarm which was previously cre-
ated. The alarm to be removed is specified by the value of thehandlear-
gument. This can be either a one-short alarm which has not gone off yet
(created with TIF_DATETIME or TIF_INTERVAL) or a repeated alarm
(created with TIF_REPEAT).

The TIF_DATETIME function sets an alarm to request a signal at the
specified date and time. If thehandleargument is 0, a new alarm is cre-
ated. If it is non-zero, it must be a value returned by this system call for an
alarm which is still active. In this case the alarm previously associated
with the handle is canceled. After the signal is requested, the alarm will be

XOS Programmer's Guide
svcSchAlarm - Alarm Functions

66

removed. The date and time are specified in the standard XOS format
(days since 1500 and fractional days).

The TIF_INTERVAL function sets an alarm to request a signal at the end
of a specified interval. If thehandleargument is 0, a new alarm is created.
If it is non-zero, it must be a value returned by this system call for an
alarm which is still active. In this case the alarm previously associated
with the handle is canceled. After the signal is requested, the alarm will be
removed. The interval is specified in fractional days in the time part of the
datetimeargument. The value of the date part must be 0.

The TIF_REPEAT function is the same as the TIF_INTERVAL function
except that the alarm created is not removed after a signal is requested. It
continues to request signals at the interval specified until it is removed
with the TIF_REMOVE function.

EXAMPLES:

Scheduler System Calls - Chapter 9
svcSchAlarm - Alarm Functions

67

svcSchClrEvent - Clear Event(s)

svcSchClrEvent

CALLING SEQUENCE:

XOSSVC svcSchClrEvent(char *cluster, long events);

VALUE RETURNED:

Returns the previous event state if normal or a negative error code if an er-
ror occurred.

DESCRIPTION:

This function clears the event(s) specified by the argumenteventsin the
cluster specified by the argumentcluster for the calling process. Bit 0 in
the eventsvalue is ignored. Each other bit corresponds to an event in the
specified event cluster. Bit 0 corresponds to event 0, bit 1 to event 1, etc. If
the cluster contains less than 31 events, the extra bits are ignored. If bitn
is 1, eventn is cleared. If bitn is 0, the state of eventn is not changed. The
value returned is the state of the events in the cluster before any were
cleared. If a bit is 1, the corresponding event was set. An event is said to
be set when it has any value other than 0.

EXAMPLES:

XOS Programmer's Guide
svcSchClrEvent - Clear Event(s)

68

svcSchCtlCDone - Report ctl-C Processing
Done

svcSchCtlCDone

CALLING SEQUENCE:

XOSSVC svcSchCtlCDone(void);

VALUE RETURNED:

The value returned is always 0.

DESCRIPTION:

This system call is used to report to the system that a process has finished
processing a ctrl-C software interrupt. This system call must be executed
before dismissing a ctrl-C interrupt or output to the sessions controlling
terminal will probably hang. The main function performed by this system
call is to synchronize the display of terminal output from child processes.
Whenever a process receives a ctrl-C interrupt, all output to the process’
controlling terminal is blocked. This is done to allow the process to handle
the ctrl-C interrupt, including possibly carrying on a dialog with the user,
without interference from terminal output generated by a child process
which may still be executing. This system call re-enables output to the ses-
sion’s controlling terminal. It should not be executed unless a ctrl-C inter-
rupt is being processed. Doing so will produce undefined results which are
likely to include hanging or otherwise undesirably affecting terminal out-
put.

EXAMPLES:

Scheduler System Calls - Chapter 9
svcSchCtlCDone - Report ctl-C Processing Done

69

svcSchDismiss - Dismiss Signal

svcSchDismiss

CALLING SEQUENCE:

XOSSVC svcSchDismiss(void);

VALUE RETURNED:

Since this system call never returns directly to the caller, no value can be
returned.

DESCRIPTION:

This system call dismisses a signal. It is the normal way of terminating a
signal routine entered with an XOS type vector as described in chapter 5
on page 30. ny signal data on the user stack is discarded and the state of
the process is restored from the user stack. If this system call is executed
in virtual-86 mode, the contents of the segment registers are also restored
from the user stack. Otherwise, the contents of the registers are not af-
fected. It is the responsibility of the user program to save registers across
signal routines.

Certain bits in the EFR value on the user’s stack are used to control the
operation of this system call. these bits are normally set to 0 when the EFR
value is stored when a signal is granted. hey can be set directly by the user
program if the indicated behavior is described. These bits are listed below.
Any bits not listed here are simply restored to the EFR. The listed bits are
all bits which have not defined use in the EFR.

Bit Meaning

26 Always restore SS:ESP and segment registers from the user
stack if set

25 Always restore SS:ESP from the user stack if set

24 Do not change signal level if set

23 Restore interrupt level using DOS conventions

EXAMPLES:

XOS Programmer's Guide
svcSchDismiss - Dismiss Signal

70

svcSchExit - Terminate Process

svcSchExit

CALLING SEQUENCE:

XOSSVC svcSchExit(long status);

VALUE RETURNED:

Since this call causes the process to terminate, no value can be returned.

DESCRIPTION:

The svcSchExit system call terminates a process and specifies a termina-
tion status which is made available to the process’ parent (see “child died”
signal in Chapter 4). This function is the usual way that a process is termi-
nated. By convention, a termination status of 0 means a normal termina-
tion; a non-zero value means some kind of problem occurred during
execution of the process. Only the low order 24-bits of the termination sta-
tus value are used. The XOS kernel does not use the termination status
value; it is simply passed to the parent process. The standard command
processor (SHELL) does use it as described above.

Note that when XOS terminates a process, it also terminates all of its child
processes. An XOS process cannot exist without a parent process, insuring
orderly termination of all created sub-processes when a process is termi-
nated.

EXAMPLES:

Scheduler System Calls - Chapter 9
svcSchExit - Terminate Process

71

svcSchGetVector - Get Signal Vector

svcSchGetVector

CALLING SEQUENCE:

XOSSVC svcSchGetVector(long vector, void far **address);

VALUE RETURNED:

Returns the vector type and signal level associated with the vector speci-
fied (always a positive number) if normal or a negative error code if an er-
ror occurred.

DESCRIPTION:

This system call gets the current contents of the signal vector specified by
the vectorargument. The vector contents consist of a vector type, signal
level, and a signal routine address. The vector type and signal level are re-
turned as the value of the system call as shown below. The address of the
signal routine for the vector is stored in the location specified by the argu-
mentaddress.

XOS Programmer's Guide
svcSchGetVector - Get Signal Vector

72

Bits Meaning

31-16 Always 0

15-8 Vector
type

Value Name Description

0 VT_IDLE Idle

1 VT_XOSS XOS signal vector

2 VT_XOST XOS trap vector

3 VT_HWT16 16-bit hardware trap vector

4 VT_HWT32 32-bit hardware trap vector

5 VT_HWS16 16-bit hardware signal vector

6 VT_HWS32 32-bit hardware signal vector

7 VT_DPMI16O DPMI v0.9 16-bit CPU exception
vector

8 VT_DPMI32O DPMI v0.9 32-bit CPU exception
vector

9 VT_DPMI16N DPMI v1.0 16-bit CPU exception
vector

10 VT_DPMI32N DPMI v1.0 32-bit CPU exception
vector

7-0 Signal
level

Value between 1 and 7

EXAMPLES:

Scheduler System Calls - Chapter 9
svcSchGetVector - Get Signal Vector

73

svcSchIntrProc - Interrupt Child Process

svcSchIntrProc

CALLING SEQUENCE:

XOSSVC svcSchIntrProc(long pid, long function, long status);

VALUE RETURNED:

Returns a value of 0 if the child process was interrupted, 1 if the child pro-
cess was killed, or a negative error code if an error occurred.

DESCRIPTION:

This system call performs several functions related to managing the execu-
tion of child processes, depending on the value of thefunctionargument.
The following describes the action for each legal value offunction.

function = 1 - Interrupt or kill normal process
This functions causes a ctrl-C interrupt for the process specified by
the pid argument or, if the process has not been set up to receive
ctrl-C interrupts, terminates the process. The specified process must
be a child of the process issuing the call.
If the child process has set up the ctrl-C software interrupt, that inter-
rupt is requested. It may or may not occur immediately, depending
on the current state of the child’s software interrupt system. The sta-
tus argument is ignored in this case. If the child process has not set up
the ctrl-C software interrupt, it is terminated with the value of the
statusargument as its termination status.
When ctrl-C or BREAK is typed on the keyboard controlling a ses-
sion, the parent process for the session, which is usually a command
shell, receives a ctrl-C software interrupt if it has set the ctrl-C inter-
rupt vector (this is the usual case). If it has not set it up, the entire ses-
sion (the parent process for the session and all of its child processes)
is terminated. If the parent process for the session is interrupted, the
kernel does nothing further; it is the responsibility of the parent pro-
cess to interrupt or terminate any child processes it might have. This
system call provides the mechanism for doing this. It basically
passes the ctrl-C interrupt one level down the process tree. A process
receiving a ctrl-C interrupt will normally issue a svcSchIntrProc sys-
tem call for each of its child processes. The child process is then in-
terrupted or terminated, just as if it had been the parent process for

XOS Programmer's Guide
svcSchIntrProc - Interrupt Child Process

74

the group and had received the ctrl-C interrupt directly. This, com-
bined with the use of the svcSchCtlCDone system call, allows for the
orderly termination of all processes in a session, without race condi-
tions, when the user types ctrl-C.

function = 2 - Interrupt or kill halted process
The action of this function is almost identical to that of function1 ex-
cept that the process must have been previously halted by issuing
function 3 (see below). The action of this function is undefined if the
child process has not been halted.

function = 3 - Halt process
This function halts execution of the specified process, which must be
a child process of the process issuing the system call. The child pro-
cess is placed in the HALTED state and will not execute further, in-
cluding not responding to software interrupts, until resumed by the
parent process (see description of function 4, below).

function = 4 - Resume process
This function resumes execution of the specified process, which
must be a child process of the process issuing the system call and
which must have been previously halted by issuing function 3 (see
above). The action of this function is undefined if the child process
has not been halted.

Functions 2, 3, and 4 are used by the command shell when executing a
batch file to implement the DOS-styleTerminate batch filequestion. All
child processes are halted using function 3 before the question is displayed
so that any output from the child processes will not appear until the user
responds. This is necessary, since XOS, unlike DOS, is a true multitasking
system, with the parent and its child processes executing concurrently.

EXAMPLES:

Scheduler System Calls - Chapter 9
svcSchIntrProc - Interrupt Child Process

75

svcSchIRet - Return From Interrupt

svcSchIRet

CALLING SEQUENCE:

XOSSVC svcSvcIRet(void);

VALUE RETURNED:

Since this system call never returns directly to the caller, no value can be
returned.

DESCRIPTION:

This system call emulates the operation of the hardware IRET instruction
except that it correctly handles transitions between real mode (really V86
mode) and protected mode. This call always assumes a 32-bit stack frame,
even when executed from real mode (V86 mode) or from a 16-bit pro-
tected mode segment. The signal level is always restored using the DOS
conventions. The svcSchDismiss system call is used to dismiss a signal
using the standard conventions.

Certain bits in the EFR value on the user’s stack are used to control the
operation of this system call to provide additional features beyond simple
emulation of the IRET instruction. These bits are normally set to 0 when
the EFR value is stored when a signal is granted. They can be set directly
by the user program if the indicated behavior is described. These bits are
listed below. Any bits not listed here are simply restored to the EFR. The
listed bits are all bits which have not defined use in the EFR.

Bit Meaning

26 Always restore SS:ESP and segment registers from the user
stack if set

25 Always restore SS:ESP from the user stack if set

24 Do not change signal level if set

EXAMPLES:

XOS Programmer's Guide
svcSchIRet - Return From Interrupt

76

svcSchKill - Terminate Any Process

svcSchKill

CALLING SEQUENCE:

XOSSVC svcSchKill(long pid, long status);

VALUE RETURNED:

Returns 0 if normal or a negative error code if an error occurred. If a pro-
cess uses this call to terminate itself, this call does not return and thus no
value is returned.

DESCRIPTION:

This function terminates any process and specifies a termination status
which is made available to the process’ parent (see “child died” signal).
Any process may terminate itself (specified by apid of 0) or any of its
child processes. A process running with the KILL privilege can terminate
any process in the system. The operation of this system call is identical to
that of the svcSchExit call except that the process to terminate is also
specified.

EXAMPLES:

Scheduler System Calls - Chapter 9
svcSchKill - Terminate Any Process

77

svcSchMakEvent - Make Event Cluster

svcSchMakEvent

CALLING SEQUENCE:

XOSSVC svcSchMakEvent(char *cluster, long size, long vector);

VALUE RETURNED:

Returns 0 if normal or a negative error code if an error occurred.

DESCRIPTION:

This system call creates or gives up an event cluster. The name of the clus-
ter is specified in theclusterargument. The size of the cluster to create is
specified in thesizeargument. It must be between 1 and 31, inclusive. A
value of 0 indicates that the specified cluster is to be given up. If a cluster
is being created, it must not already exist. If it is being given up, it must
exist.

The vector argument specifies the base signal vector for a cluster being
created. When an event is set, a signal is requested on the interrupt whose
number is the sum of the base vector number specified here and the event
number. Avectorvalue of -1 indicates that no signals are to be requested
for the event cluster.

EXAMPLES:

XOS Programmer's Guide
svcSchMakEvent - Make Event Cluster

78

svcSchRelEvent - Release Event

svcSchRelEvent

CALLING SEQUENCE:

XOSSVC svcSchRelEvent(char *cluster, long events);

VALUE RETURNED:

Returns a mask of the remaining reserved events in the cluster if normal or
a negative error code if an error occurred.

DESCRIPTION:

This system call releases events which were previously reserved by the
svcSchResEvent system call. The cluster containing the events is specified
by theclusterargument and the events are specified by the bits set in the
eventsargument. Each event corresponding to a bit set in theeventsargu-
ment is released if it was reserved. It is not an error to specify an event
which was not reserved. If bit 31 of theeventsargument is set, the event
cluster is given up if there are no remaining reserved events.

Note that being reserved or not reserved is an attribute of an event which
is completely separate from its value. The intent of this mechanism is to
provide a way to allow independent parts of a program to share the a sin-
gle event cluster.

EXAMPLES:

Scheduler System Calls - Chapter 9
svcSchRelEvent - Release Event

79

svcSchResEvent - Reserve Event

svcSchResEvent

CALLING SEQUENCE:

XOSSVC svcSchResEvent(char *cluster, long event);

VALUE RETURNED:

Returns the number of the event reserved if normal or a negative error
code if an error occurred.

DESCRIPTION:

This system call reserves an event in the specified cluster. If theeventar-
gument is not -1, the specified event is reserved if it is not already re-
served. If it is reserved, an ER_EVRES error is returned. If the event
argument is -1, the lowest number event in the cluster which is not re-
served is reserved. If there are no non-reserved events in the cluster, an
ER_EVRES error is returned.

Note that being reserved or not reserved is an attribute of an event which
is completely separate from its value. The intent of this mechanism is to
provide a way to allow independent parts of a program to share the a sin-
gle event cluster.

EXAMPLES:

XOS Programmer's Guide
svcSchResEvent - Reserve Event

80

svcSchSetEvent - Set Event(s)

svcSchSetEvent

CALLING SEQUENCE:

XOSSVC svcSchSetEvent(char *cluster, long event, long value, long pid);

VALUE RETURNED:

Returns 0 if normal or a negative error code if an error occurred.

DESCRIPTION:

Sets the event specified in the argumenteventin the cluster specified by
the argumentclusterfor the process specified by the argumentpid.

The event cluster must have been previously created with the
svcSchMakEvent system call. The event number specified must be less
than the number of events in the cluster. The value specified must be a
non-zero positive number. If a signal vector was associated the cluster
when it was created and the event being set was previously cleared, a sig-
nal will be requested for the process specified.

This system call is intended to provide a simple means of informing a pro-
cess that some event of interest has occurred and specifying a single inte-
ger value describing the event. If more information needs to be passed to
another process, the Interprocess Message device (IPM) should be used in-
stead. This call, however, has significantly less overhead and should be
used where possible.

EXAMPLES:

Scheduler System Calls - Chapter 9
svcSchSetEvent - Set Event(s)

81

svcSchSetLevel - Set Signal Level

svcSchSetLevel

CALLING SEQUENCE:

XOSSVC svcSchSetLevel(long level);

VALUE RETURNED:

Returns the level level in effect when the call was issued (which is posi-
tive) if normal or a negative error code if an error occurred unless bit 4 in
levelis set, in which case EAX is unchanged.

DESCRIPTION:

This system call sets the current signal level for the current process and re-
turns the previous signal level. The value given in the argumentlevelspec-
ifies the new signal level as follows:

Bit(s) Meaning

31-8 Not used, ignored

7 Not used, must be 0

6-5 00 = Set level from bits 3-0

01 = OR bits 3-0 to level

10 = AND complement of bits 3-0 to level

11 = Do not change level

4 0 = Return previous value

1 = Do not change EAX

3-0 New level value

EXAMPLES:

XOS Programmer's Guide
svcSchSetLevel - Set Signal Level

82

svcSchSetVector - Set Signal Vector

svcSchSetVector

CALLING SEQUENCE:

XOSSVC svcSchSetVector(long vector, long type, void *address);

VALUE RETURNED:

Returns 0 if normal or a negative error code if an error occurred.

DESCRIPTION:

This system call sets the vector type, signal level, and address for a signal
vector. The argumentvectorspecifies the vector to set. This value must be
between 0 and 255. All vector use is controlled by the program; conse-
quently, if a vector number has not previously been used, it is available.
The indicated signal vector is set to the values given by the argumentstype
andaddress.

The argumenttypespecifies the vector type and signal level to associate
with the vector as described below.

Scheduler System Calls - Chapter 9
svcSchSetVector - Set Signal Vector

83

Bits Meaning

31-16 Not used, must be 0

15-8 Vector
type

Value Name Description

0 VT_IDLE Idle

1 VT_XOSS XOS signal vector

2 VT_XOST XOS trap vector

3 VT_HWT16 16-bit hardware trap vector

4 VT_HWT32 32-bit hardware trap vector

5 VT_HWS16 16-bit hardware signal vector

6 VT_HWS32 32-bit hardware signal vector

7 VT_DPMI16O DPMI v0.9 16-bit CPU exception vec-
tor

8 VT_DPMI32O DPMI v0.9 32-bit CPU exception vec-
tor

9 VT_DPMI16N DPMI v1.0 16-bit CPU exception vec-
tor

10 VT_DPMI32N DPMI v1.0 32-bit CPU exception vec-
tor

7-0 Signal
level

Value between 1 and 7

The argumentaddressspecifies the address of the signal routine for the
vector.

EXAMPLES:

XOS Programmer's Guide
svcSchSetVector - Set Signal Vector

84

svcSchSpawn - Create Child Process

svcSchSpawn

CALLING SEQUENCE:

XOSSVC svcSchSpawn(SAB *sab);

VALUE RETURNED:

Value returned is 0 if operation started succesfully or a negative error code
if an error occured. To verify complete success, caller must check both
the returned value and the value stored in sab_error (which will be 0 if no
errors).

DESCRIPTION:

This system call creates a child process. The initial memory for the new
process is taken from memory belonging to the processing executing the
system call. The single argument, sab, provides the address of a “spawn
argument block” (SAB) which has the following format:

Name Size Description

sab_func 2 Function

sab_status 2 Returned status

sab_error 4 Returned error code

sab_pid 4 Returned PID

sab_type 1 Returned process type

3 Not used, must be 0

sab_vector 2 Vector number

sab_numseg 1 Number of segments to give to new process

1 Not used, must be 0

sab_option 4 Option bits and event number

sab_name 8 Address of name for new process

sab_EIP 4 Initial EIP value for new process

sab_CS 4 Initial CS value for new process

sab_ESP 4 Initial ESP value for new process

sab_SS 4 Initial SS value for new process

sab_parm 8 Address of parameter list

sab_segsel 8 * n Selectors for segments to give to new process

Scheduler System Calls - Chapter 9
svcSchSpawn - Create Child Process

85

The high order byte of the sab_func value is bit encoded. Currently only
the high-order bit (0x8000) is used. When set it indicates that the system
should not return until the operation is complete. Otherwise, it returns as
soon as the operation has been started. The low order byte specifies the
function. Currently the only function implemented is to create a child pro-
cess which is indicated with a value of 0x01.

The create child function is complete when the child process has been cre-
ated and scheded to execute.

The sab_status, sab_error, and sab_vector values are the same as are de-
scribed for the qab_status, qab_error, and sab_vector values for the
svcIoQueue system call.

When the operation is complete, the process ID (PID) for the child process
is stored in sab_pid and the process type is stored in sab_type. The process
type values are as follows:

Name Value Description

IT_XOS32 1 XOS 32-bit protected mode process

IT_XOS16 2 XOS 16-bit protected mode process

IT_XOSV86 3 XOS 16-bit “real” mode process

IT_DOSEXE 8 DOS process loaded from .EXE file

IT_DOSCOM 9 DOS process loaded from .COM file

IT_BATCH 15 Batch process

The sab_option value contains option bits in the 3 high order bytes and an
event number in the low order byte. The option bits are defined below.

Name Value Description

R$SAMEPROC 0x80000000 Use same process

R$SESSION 0x04000000 Create new session for child process

R$CPYENV 0x00800000 Copy current enviroment to new process

R$ACSENV 0x00400000 Allow new process to access this pro-
cess’s enviroment

R$CHGENV 0x00200000 Allow new process to change this pro-
cess’s enviroment

R$CPYPTH 0x00040000 Copy default paths to new process

R$CHGPTH 0x00020000 Allow new process to change this pro-
cess’s default

XOS Programmer's Guide
svcSchSpawn - Create Child Process

86

The event number specifies the event in the ^XOS^PROC event cluster for
the process issueing this system call which is to be set when the child pro-
cess terminates. A value of 0xFF indicates that no event is to be set..

The sab_name field specifies the address of a string which gives the initial
name for the child process.

The sab_EIP, sab_CS, sab_ESP, and sab_SS fields specify the initial val-
ues for the CS:EIP and SS:ESP for the child process.

The sab_parm field specifies the address of a paremeter list. This list can
contain any of the IOPAR_RUNxxxx parameters except
IOPAR_RUNDEVLIST.

The sab_segsel field contains a table of segment selector pairs. It contains
one pair for each segment which is to be transfered to the child process.
The first segment of each pair specifies the selector for the segment in the
caller’s address space. The second segment specifies the selector to give
the segment in the child’s address space.

This system call is intended mainly for use by the user mode system rou-
tine which implements the svcIoRun system call. While it can be executed
directly by protected mode user code, this is usually not useful. It cannot
be executed from virtual-86 mode.

Scheduler System Calls - Chapter 9
svcSchSpawn - Create Child Process

87

svcSchSuspend - Suspend Process

svcSchSuspend

CALLING SEQUENCE:

XOSSVC svcSchSuspend(long far *flag, long time);

VALUE RETURNED:

The value returned is 0 if normal or a negative error code if an error oc-
curred.

DESCRIPTION:

If the address of theflag argument is not NULL and the contents of the
longword (32-bits) pointed to by theflag argument is 0, no action is taken,
and control is immediately returned to the caller. Otherwise, the current
process is suspended for the length of time, in fractional days, specified in
the time argument. The maximum allowable value is just less than 12
hours (a value of 0x7FFFFFFF). If thetime argument is -1, the process is
suspended forever. If it is 0, control returns immediately.

Signals will be granted while the process is suspended, provided, of
course, that the process state allows the signal. When the signal is dis-
missed, the svcSchSuspend call resumes waiting for the time interval to
expire. The time elapsed while executing the signal routine is subtracted
for the time remaining to wait. The signal routine can terminate the wait
immediately, setting the longword pointed to bythe flag argument to 0.
Changing the time value during execution of the interrupt routine, how-
ever, has no effect.

The flag word is intended to be used to prevent race conditions that could
occur if the suspend function is used to wait for an expected software in-
terrupt and the interrupt occurs after the decision has been made to sus-
pend but before the suspend function is executed. The proper sequence is
to set the flag word to a non-zero value, check to see if the interrupt is still
expected, and if so, execute the suspend function. The software interrupt
routine should zero the flag word. Thus, if the interrupt occurs after the
test but before the suspend function, the flag word will be 0 and the sus-
pend function will return immediately. If this interlock is not needed, a
NULL address may be passed to the suspend function, this checking will
not be done, and the process will always be suspended.

XOS Programmer's Guide
svcSchSuspend - Suspend Process

88

EXAMPLES:

Scheduler System Calls - Chapter 9
svcSchSuspend - Suspend Process

89

svcSchWaitProc - Wait for Process to Terminate

svcSchWaitProc

CALLING SEQUENCE:

XOSSVC svcSchWaitProc(long pid, long timeout);

VALUE RETURNED:

Returns 0 if normal or a negative error code if an error occurred. The nor-
mal return is given if the process does not exist.

DESCRIPTION:

Waits for the process specified by the argumentpid to terminate. In order
to wait for a process to terminate, a process must have the privileges
needed to terminate that process. Thetimeoutargument specifies the max-
imum time to wait, in fractional days. The maximum value is just less than
12 hours (a value of 0x7FFFFFFF). This system call will wait forever if
timeoutis set to -1. It will return immediately if it is set to 0 (which is gen-
erally not useful). If the specified process does not exist in the system
when this call is executed, which will be the case if it has already termi-
nated, an ER_BDPID error is returned.

EXAMPLES:

XOS Programmer's Guide
svcSchWaitProc - Wait for Process to Terminate

90

svcSchWaitMEvent - Wait for Multiple Events

svvSchWaitMEvent

CALLING SEQUENCE:

XOSSVC svcSchWaitMEvent(char *cluster, long events, long timeout);

VALUE RETURNED:

Value returned is the event state mask if normal or a negative error code if
an error occurred.

DESCRIPTION:

This system call waits until one or more events in a cluster are set. The
cluster is specified by thecluster argument. The events to wait for are
specified by bits 30-0 of theeventsargument. Each bit which is set indi-
cates that the corresponding event is to be waited for. If bit 31 is 0, the
wait will terminate when any of the indicated events is set. If bit 31 is 1,
the wait will terminate when all of the indicated events are set. Thetime-
out argument specifies the maximum time to wait in fractional days. A
value of 0xFFFFFFFF means to wait forever and a value of 0 means to re-
turn immediately. Note that returning because of the timeout value is not
considered an error. The caller must check the returned state mask to de-
termine if any of the desired events were really set or if a timeout oc-
curred. A set bit in the returned value indicates that the corresponding
event is set.

EXAMPLES:

Scheduler System Calls - Chapter 9
svcSchWaitMEvent - Wait for Multiple Events

91

svcSchWaitSEvent - Wait for Single Event

svcSchWaitSEvent

CALLING SEQUENCE:

XOSSVC svcSchWaitSEvent(char *cluster, long event, long timeout);

VALUE RETURNED:

Value returned is the value of the event if normal or a negative error code
if an error occurred.

DESCRIPTION:

This system call waits until a single event in a cluster are set. The cluster
is specified by theclusterargument. The event to wait for is specified by
the eventargument. The event is specified as a numeric value between 0
and the maximum event number for the cluster, not as a bit mask. The
timeoutargument specifies the maximum time to wait in fractional days. A
value of 0xFFFFFFFF means to wait forever and a value of 0 means to re-
turn immediately. Note that returning because of the timeout value is not
considered an error. The caller must check the returned value to determine
if the desired event was really set or if a timeout occurred. A non-zero re-
turned value indicates that the event is set.

Note that using this system call is the only way that the value of an event
flag can be obtained. If the intent of the call is to simply obtain the current
value of the event without waiting, thetimeoutargument should be 0.

EXAMPLES:

XOS Programmer's Guide
svcSchWaitSEvent - Wait for Single Event

92

Chapter 10

Memory System Calls

This chapter describes the memory system calls. The memory system calls create
and destroy memory segments, allocate and deallocate memory within segments,
manage shared memory sections, allocate and deallocate linear memory blocks not
associated with segments, allocate and deallocate segment descriptors, read and
write segment descriptors, and obtain information about memory allocation. For a
general description of the XOS memory architecture, refer to Chapter 2.

The memory system calls fall into two general groups: those that deal with seg-
ments, memory sections, and pages; and those that deal directly with segment selec-
tors and the linear address space. The latter group are implemented mainly to
support the DPMI routines and generally should not be used by native XOS pro-
grams. These functions may not be supported in future versions of XOS.

Memory System Calls - Chapter 10

93

svcMemBlkAlloc - Allocate Linear Memory Block

svcMemBlkAlloc

CALLING SEQUENCE:

XOSSVC svcMemBlkAlloc(long lapage, long size, long bits, long client);

VALUE RETURNED:

This call returns the page number of the first linear address page allocated
if normal or a negative error code if an error occurred.

DESCRIPTION:

This system call allocates a block of consecutive 4096 byte pages in the
process’ linear address space. It can only be issued from protected mode. It
will fail (with no memory allocated) if the requested number of pages can-
not be allocated in a single contiguous block. Thelapageargument speci-
fies the page number of the first linear address page to allocate. A value of
0 means to allocate the pages at any available page. Thesizeargument
specifies the number of pages to allocate. Thebits argument specifies the
attributes of the pages allocated as follows:

Bit Meaning
0 Must be 1
1 Set if pages are to be writable
2 Must be 0
3 Set if pages are to be virtual

4-7 Must be 0

The client argument specifies the DPMI client number to be associated
with the memory block. It must have a value between 1 and 63.

This system call is intended primarily for the use of the DPMI routines,
but it can be used by any user code operating in protected mode.

EXAMPLES:

XOS Programmer's Guide
svcMemBlkAlloc - Allocate Linear Memory Block

94

svcMemBlkChange - Change Size of Linear
Memory Block

svcMemBlkChange

CALLING SEQUENCE:

XOSSVC svcMemBlkChange (long lapage, long size, long bits, long client);

VALUE RETURNED:

This call returns the page number of the first linear address page in the
block or the number of pages in the block (ifsize= -1) if normal or a neg-
ative error code if an error occurred. Note that the number of first page of
the block may change as a result of this call.

DESCRIPTION:

This system call changes the size of a linear address space memory block.
It can only be issued from protected mode. Thelapageargument specifies
the page number of the first linear address page in the block. The size ar-
gument specifies the new size for the block, in pages. A value of 0 means
to completely deallocate the block. A value of -1 means to return the cur-
rent size of the block in pages. Thebits argument specifies the attributes
for any new pages allocated as follows:

Bit Meaning
0 Must be 1
1 Set if pages are to be writable
2 Must be 0
3 Set if page is to be virtual

4-7 Must be 0

This value is ignored if no new pages are allocated by the call. Theclient
argument specifies the DPMI client number associated with the memory
block. It must be a number between 1 and 63 and must match the DPMI
client number specified when the block was initially allocated. If it does
not match, an ER_NOMEM error is returned.

This system call is intended primarily for the use of the DPMI routines,
but it can be used by any user code operating in protected mode.

Memory System Calls - Chapter 10
svcMemBlkChange - Change Size of Linear Memory Block

95

EXAMPLES

XOS Programmer's Guide
svcMemBlkChange - Change Size of Linear Memory Block

96

svcMemBlkFree - Give up All Linear Memory
Blocks

svcMemBlkFree

CALLING SEQUENCE:

XOSSVC svcMemBlkFree(long client);

VALUE RETURNED:

This call returns the number of blocks given up if normal or a negative er-
ror code if an error occurred.

DESCRIPTION:

This system call gives up all linear address space memory blocks allocated
for the specified DPMI client. It can only be issued from protected mode.
Theclient argument, which must be a number between 1 and 63, specifies
the DPMI client.

This system call is intended primarily for the use of the DPMI routines,
but it can be used by any user code operating in protected mode.

EXAMPLES:

Memory System Calls - Chapter 10
svcMemBlkFree - Give up All Linear Memory Blocks

97

svcMemChange - Change Memory Allocation

svcMemChange

CALLING SEQUENCE:

XOSSVC svcMemChange(void far *base, long type, long size);

VALUE RETURNED:

This call returns the new actual amount of memory allocated in the mem-
ory section if normal or a negative error code if an error occurred.

DESCRIPTION:

This function changes the amount of memory allocated to a memory sec-
tion. If no memory section exists beginning at the address specified by the
argumentbase, one is created. The size of the memory section beginning
at the address specified is changed to be as close as possible to, but not
less than, the specified size. It may not be possible to allocate the exact
amount requested because of the granularity of memory allocation
(4Kbytes). If a size of 0 is specified, the memory section is completely re-
moved from the segment. If a size of -1 is specified, the current size is un-
changed and is returned. This is the normal method of obtaining the
current size of a memory section. This call is used to create, remove, in-
crease the size of, and decrease the size of memory sections. When creat-
ing or increasing the size of a memory section, all pages to be allocated
must be currently unused, or an ER_MACFT error is generated. Also,
when creating or increasing the size of a memory section, the argument
typespecifies the page type for all newly allocated pages (the type of al-
ready allocated pages, if any, is not changed). The page type value is bit
encoded as specified below.

Name Bit Meaning
PG$VIRTUAL 3 Virtual
PG$EXECUTE 2 Executable
PG$WRITE 1 Writable
PG$READ 0 Readable

When the PG$VIRTUAL bit is set, the address space for the page is allo-
cated but no physical page is mapped. A page containing all 0s will be al-
located and mapped the first time the program touches the page. This is

XOS Programmer's Guide
svcMemChange - Change Memory Allocation

98

useful for allocating space for automatic expansion of a stack, for exam-
ple.

The PG$EXECUTE bit is not used in the current version of XOS since the
Intel 32-bit architecture does not implement the executable attribute at the
page level. This attribute can be set only at the segment level.

The PG$WRITE bit is meaningful only for pages in data segments. When
the bit is not set, the page is read-only. This is generally not useful when a
page is initially allocated (since it will initially contain all 0s). The
svcMemPageType system call allows this bit to be set after data has been
written to a memory page.

The PG$READ bit is not used in the current version of XOS since the
Intel 32-bit architecture does not implement no-read access at the page
level (no-read access can only be specified at the segment level, and then
only for code segments).

EXAMPLES:

Memory System Calls - Chapter 10
svcMemChange - Change Memory Allocation

99

svcMemConvShr - Convert to Shared Section

svcMemConvShr

CALLING SEQUENCE:

XOSSVC svcMemConvShr(void far *base, char far *name, long type, long level,
long protection, void far *acl);

VALUE RETURNED:

This call returns the segment ID of the shared segment (a positive number)
if normal or a negative error code if an error occurred.

DESCRIPTION:

This system call converts a private memory section to a shared memory
section which is accessible by other processes. The argumentbasespeci-
fies the base address of the memory section to convert. The argument
namespecifies the name for the shared section. The argumenttypespeci-
fies the type the shared section. This type is unique to shared sections and
specifies how sharing of the segment is managed. The valid values are de-
fined in Table 10.2.

Table 10.2 - Shared section types
Name Value Meaning

SST$READWRITE 1 Read/write access
SST$READONLY 2 Read only access
SST$COPYWRITE 3 Copy on write

All pages in a shared section are either read/write or read only as indicated
by the shared section type, regardless of whether the page was writable in
the original private section. The copy on write shared section is not imple-
mented in the current version of XOS. If it is specified, the section is
treated as a read/write section.

The argumentlevelspecifies the compatibility level for the shared section.
This is a 32-bit value. The high order 16-bits specify the major compatibil-
ity level and the low order 16-bits specify the minor compatibility level. A
compatibility level must also be specified when a program links to an ex-
isting shared section. For the link to succeed, the two major levels must
match exactly and the minor level specified by the program linking must
be less than or equal to the minor level specified when the shared section

XOS Programmer's Guide
svcMemConvShr - Convert to Shared Section

100

was created. This is intended to provide a way to verify that the version of
the shared section is compatible with the version of the program which is
accessing it. If this verification is not desired, this argument should be set
to 0 both when creating the shared section and when linking to it.

The argumentprotectionspecifies the protection level of the shared sec-
tion. This feature is not implemented in the current version of XOS. This
argument should be specified as 0xFFFFFFFF to insure compatibility with
future versions of XOS.

The argumentacl specifies the access control list for the shared section.
This feature is not implemented in the current version of XOS. This argu-
ment should be specified as a NULL address to insure compatibility with
future versions of XOS.

EXAMPLES:

Memory System Calls - Chapter 10
svcMemConvShr - Convert to Shared Section

101

svcMemCopy2PM - Copy Data to Protected
Mode Memory

svcMemBlkAlloc

CALLING SEQUENCE:

XOSSVC svcMemCopy2PM(void far16 *dest, void far32 *src, long count);

VALUE RETURNED:

This call returns 0 if normal or a negative error code if an error occurred.

DESCRIPTION:

This system call can only be issued from virtual-86 mode. It copies a
block of data to protected mode memory. Thedestargument specifies the
protected mode address that the data is to be copied to. Thesrc argument
specifies the real mode address that the data is to be copied from. The
countargument specifies the number of bytes to copy. The destination area
must be allocated before this call is issued.

This system call allows virtual-86 mode code to copy data directly to pro-
tected mode memory, which it can not otherwise access. It is intended pri-
marily for use by the DPMI routines, but can be used by any user code
executing in real mode.

EXAMPLES:

XOS Programmer's Guide
svcMemCopy2PM - Copy Data to Protected Mode Memory

102

svcMemCreate - Create New Segment

svcMemCreate

CALLING SEQUENCE:

XOSSVC svcMemCreate(long select, long type);

VALUE RETURNED:

This call returns the selector used (high 16 bits are zero) if normal or a
negative error code if an error occurred.

DESCRIPTION:

This system call creates a new memory segment. It does not allocate any
memory to this segment (see the svcMemChange system call). Theselect
argument specifies the selector for the new segment (0 means to allocate a
selector; 0FFFFh specifies the virtual-86 mode segment.) Thetype argu-
ment specifies the segment type, and is defined in Table 10.3.

Table 10.3 - Segment type values
Name Value Description

AT_32RODATA 1 32bit read only data
AT_32RWDATA 2 32bit read/write data
AT_32STACK 3 32bit stack
AT_32NXOCODE 4 32bit execute only normal code
AT_32NXRCODE 5 32bit execute/read normal code
AT_32CXOCODE 6 32bit execute only conformable code
AT_32CXRCODE 7 32bit execute/read conformable code
AT_16RODATA 9 16bit read only data
AT_16RWDATA 10 16bit read/write data
AT_16STACK 11 16bit stack
AT_16NXOCODE 12 16bit execute only normal code
AT_16NXRCODE 13 16bit execute/read normal code
AT_16CXOCODE 14 16bit execute only conformable code
AT_16CXRCODE 15 16bit execute/read conformable code
AT$TOP 0x80000000 Allocate highest available selector

A segment of the type specified is created. If a selector is specified, it is
assigned to the segment; otherwise an available selector is allocated.
Normally, the local selector, with the lowest value which is not in use, is
used. If AT$TOP is set in thetype argument, the local selector with the

Memory System Calls - Chapter 10
svcMemCreate - Create New Segment

103

highest value which is not in use is used. If a selector is specified, it must
not be in use. The meaning of “highest value” is variable. Selector table
space is allocated internally in blocks of 32 selectors. When allocating
from the “highest value”, only currently allocated selector table space is
considered. Thus, if no higher valued selector has been explicitly allo-
cated, the “highest value” will be 0xF8 (the 32th selector).

If the virtual-86 segment is specified, thetypeargument is not used. When
the virtual-86 segment is created, it is not immediately addressable by a
protected mode program. The selector returned by this call will be 0xFFF8
in this case, which can only be used as an argument to the svcMemLink
call to link an actual selector to the virtual-86 segment.

This function is not valid in virtual-86 mode.

EXAMPLES:

XOS Programmer's Guide
svcMemCreate - Create New Segment

104

svcMemDebug - Memory Debug Functions

svcMemDebug

CALLING SEQUENCE:

XOSSVC svcMemDebug(long func, void far *addr, void far *value);

VALUE RETURNED:

This call returns the segment type (see svcMemCreate system call) if nor-
mal or a negative error code if an error occurred.

DESCRIPTION:

This function is intended for use by debuggers. It allows memory refer-
ences to be made without worrying about memory traps, since if there is a
problem, such as a non-existent memory location, an error code is re-
turned. It also provides the type of segment for the address referenced.
This information is generally needed by a debugger to interpret the con-
tents of memory. Finally, it provides a simple way to modify the contents
of a code segment, without having to set up an aliased data segment.

For the read functions, the value currently in the address specified by the
argumentaddr is zero extended to 32-bits, if necessary, and is stored in the
location pointed to by the argument value. For the write function, the
value pointed to by the argumentvalueis written into the address specified
by the argumentaddr. Only as many bits as needed are used. The address
being modified may be in any type of segment, even a code segment,
which is not normally modifiable.

The argumentfuncspecifies the function as defined in Table 10.4.

Table 10.4 - Memory debug functions
Name Value Meaning

MDB_READBYTE 1 Read Byte
MDB_READWORD 2 Read Word
MDB_READLONG 3 Read Long
MDB_WRITEBYTE 4 Write Byte
MDB_WRITEWORD 5 Write word
MDB_WRITELONG 6 Write long
MDB_PHYSADDR 8 Return physical address

EXAMPLES:

Memory System Calls - Chapter 10
svcMemDebug - Memory Debug Functions

105

svcMemDescAlloc - Allocate Segment Descriptor

svcMemDescAlloc

CALLING SEQUENCE:

XOSSVC svcMemDescAlloc(long selector, long num, long kind);

VALUE RETURNED:

This call returns the first selector allocated if normal or a negative error
code if an error occurred.

DESCRIPTION:

This system call allocates a block of consecutive local segment
descriptors. It can only be issued from protected mode. It will fail (with no
descriptors allocated) if the requested number of descriptors cannot be al-
located in a single contiguous block. The selector argument specifies the
selector for the first descriptor to allocate. If bit 31 is set, the system will
search for an available block of descriptors starting with the selector speci-
fied. If bit 31 is not set, the call will fail if the requested number of
descriptors cannot be allocated starting with the selector specified. The
num argument specifies the number of descriptors to allocate. The kind ar-
gument specifies the selector kind. Only the low 8 bits of the value are
used. Bits 2 through 7 specify the DPMI client number and bits 0 through
1 specify the segment kind as follows:

Bits 0-1 Segment kind
0 Illegal
1 DPMI static segment
2 DPMI allocated segment
3 DPMI DOS memory segment

The descriptor is initialized to be a 16-bit data segment descriptor with
byte granularity. It has a segment size of 1 byte and a base linear address
of 0. It must be set up with the svcMemDescWrite or svcMemDescSet
system calls before it can be used. The increment between consecutive
descriptors allocated by this call is always 8.

This system call is intended primarily for the use of the DPMI routines,
but it can be used by any user code operating in protected mode.

XOS Programmer's Guide
svcMemDescAlloc - Allocate Segment Descriptor

106

EXAMPLES:

Memory System Calls - Chapter 10
svcMemDescAlloc - Allocate Segment Descriptor

107

svcMemDescFind - Find Segment Descriptor

svcMemDescFind

CALLING SEQUENCE:

XOSSVC svcMemDescFind(long kind, long linaddr);

VALUE RETURNED:

This call returns the value of the selector for the descriptor found if normal
or a negative error code if an error occurred.

DESCRIPTION:

Finds a local segment descriptor given the descriptor kind and base linear
address. The kind argument specifies the selector kind. Only the low 8 bits
of the value are used. Bits 2 through 7 specify the DPMI client number
and bits 0 through 1 specify the segment kind as follows:

Bits 0-1 Segment kind
0 Illegal
1 DPMI static segment
2 DPMI allocated segment
3 DPMI DOS memory segment

The linaddr argument specifies the base linear address for the selector. If
more than one descriptor matches thekind and linaddr values, only the
one with the lowest value selector is found.

This system call is intended primarily for the use of the DPMI routines,
but it can be used by any user code operating in protected mode.

EXAMPLES:

XOS Programmer's Guide
svcMemDescFind - Find Segment Descriptor

108

svcMemDescFree - Give Up Segment Descriptor

svcMemDescFree

CALLING SEQUENCE:

XOSSVC svcMemDescFree(long selector);

VALUE RETURNED:

This call returns 0 if normal or a negative error code if an error occurred.

DESCRIPTION:

This system call gives up a segment descriptor allocated with the
svcMemDescAlloc system call. It can only be issued for protected mode.
Theselectorargument specifies the selector for the descriptor to give up.

This system call is intended primarily for the use of the DPMI routines,
but it can be used by any user code operating in protected mode.

EXAMPLES:

Memory System Calls - Chapter 10
svcMemDescFree - Give Up Segment Descriptor

109

svcMemDescRead - Read Segment Descriptor

svcMemDescRead

CALLING SEQUENCE:

XOSSVC svcMemDescRead(long selector, desc_value far *data);

VALUE RETURNED:

The value returned is 0 if normal or a negative error code if an error oc-
curred. On a normal return, thedatastructure is filled in.

DESCRIPTION:

This system call returns the contents of the segment descriptor associated
with the segment selector specified in theselectorargument. Thedataar-
gument specifies the address of an 8 byte data structure which is filled in
with the contents of the descriptor. The format of this structure is the same
as the format of the 80386 hardware segment descriptor, which is shown
below.

3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 Bit1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

Base 31:24 G D 0 X Limit 1 1 1 1 D 0 W A Base 23:16 +419:16 C R

Base 15:00 Limit 15:00 +0

It should be noted that the segment limit value (20-bits) is stored as two
separate items and the base linear address (32-bits) is stored as three items.
This is the result of the 80386 descriptor maintaining compatibility with
the original 80286 descriptor format. The single bit fields indicated as con-
taining either 0 or 1 must contain the indicated value. The other single bit
fields are as follows:

Bit Description
G Granularity: 0 = byte, 1 = page
D Default width: 0 = 16-bit, 1 = 32-bit
X Not used, available to user software

D/C Code/data: 0 = code, 1 = data
W/R If code, 0 = execute only, 1 = execute/read; if data,

0 = read only, 1 = read/write
A Accessed; 0 = not accessed, 1 = accessed

XOS Programmer's Guide
svcMemDescRead - Read Segment Descriptor

110

This system call is intended primarily for the use of the DPMI routines,
but it can be used by any user code operating in protected mode. This call
can be used to read any user accessible descriptor, not just those allocated
with the svcMemDescAlloc system call.

Examples:

Memory System Calls - Chapter 10
svcMemDescRead - Read Segment Descriptor

111

svcMemDescSet - Set Value in Segment
Descriptor

svcMemDescSet

CALLING SEQUENCE:

XOSSVC svcMemDescSet(long selector, long field, long data);

VALUE RETURNED:

This call returns the selector for the descriptor modified if normal or a
negative error if an error occurred.

DESCRIPTION:

This system call sets a single field in a segment descriptor allocated with
the svcMemDescAlloc call. It can only be issued from protected mode.
The selector argument specifies the selector for the descriptor to modify.
The field argument specifies the field to modify as follows.

Name Value Field
SDF_BASE 1 Base linear address
SDF_LIMIT 2 Segment limit
SDF_ACCESS 3 Access bits

When changing the access bits (SDF_ACCESS), the data value
has the following format (the high order 16 bits must be 0).

1 1 1 1 1 1
5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

G D 0 X 0 0 0 0 1 1 1 1
D

0
W

A
C R

This system call is intended primarily for the use of the DPMI routines,
but it can be used by any user code operating in protected mode.

EXAMPLES:

XOS Programmer's Guide
svcMemDescSet - Set Value in Segment Descriptor

112

svcMemDescWrite - Write Segment Descriptor

svcMemDescWrite

CALLING SEQUENCE:

XOSSVC svcMemDescWrite(long selector, desc_value far *data);

VALUE RETURNED:

This call returns 0 if normal or a negative error code if an error occurred.

DESCRIPTION:

This system call sets the contents of a segment descriptor which was allo-
cated with the svcMemDescAlloc system call from the user’s 8 byte data
structure. It can only be issued from protected mode. Theselectorargu-
ment specifies the selector which corresponds to the descriptor being writ-
ten. The data argument specifies the address of the user’s data structure.
The format of this data structure is the same as is used with the
svcMemDescRead system call and is described on page 110.

This system call is intended primarily for the use of the DPMI routines,
but it can be used by any user code operating in protected mode.

EXAMPLES:

Memory System Calls - Chapter 10
svcMemDescWrite - Write Segment Descriptor

113

svcMemDosSetup - Set Up DOS Memory

svcMemDosSetup

CALLING SEQUENCE:

XOSSVC svcMemDosSetup(long amount, dos_data far *data);

VALUE RETURNED:

This call returns 0 if normal or a negative error code if an error occurred.
Also, values are stored in the caller’s data structure as described below on
a normal return.

DESCRIPTION:

This system call creates a real mode DOS environment. It can only be is-
sued from protected mode. This call is primarily intended for internal use
by svcIoRun routine. It can be issued directly by protected mode user pro-
grams, but this should not be necessary and is not recommended.

The process issuing this call must not have a real mode segment allocated.
This call performs the following actions:

1. It allocates a real mode segment. This also allocates one page at
0xEC000 for the real mode stack page and maps the pages between
0xED000 and 0xEFFFF to the real mode system memory section.
This memory section contains the real mode code used to implement
the XOS native system calls and the DOS and DPMI system calls.
These system calls are mostly implemented in protected mode, but a
small amount of real mode code is required.

2. It allocates the first real mode page (page 0).

3. It fills all additional pages (if any) below the address specified by the
value of the REALBASE PROCESS class characteristic with
non-existent memory.

4. It physically allocates the amount of memory specified by the
amountargument (starting at the address specified by the value of
REALBASE).

5. It virtually allocates the additional pages needed to fill memory up to
the size specified by the value of the value of the REALSIZE PRO-
CESS class characteristic.

XOS Programmer's Guide
svcMemDosSetup - Set Up DOS Memory

114

6. It fills any remaining pages below 0xA0000 with non-existent mem-
ory.

7. It maps the console display buffer between 0xA0000 and 0xBFFFF
with unused memory in this range mapped to non-existent memory.

8. It pages between 0xC0000 and 0xEBFFF are filled with non-existent
memory.

9. It pages between 0xED000 and 0xEF000 are mapped to the real
mode system memory section.

10. It pages between 0xF0000 and 0xFFFFF are mapped to the physical
BIOS ROMs.

11. The values of the REALBASE, REALSIZE, DOSFCBN, and
DOSFCBP PROCESS class characteristics are stored in the data
structure specified by thedataargument. Each value is stored as a
long (4 bytes).

12. It initializes the real mode vectors, the DOS FCB table, the other low
memory areas used by the DOS emulator, and the DOS memory
arena headers.

After a normal return from this system call, the process has created a
16-bit real mode DOS environment.

EXAMPLES:

Memory System Calls - Chapter 10
svcMemDosSetup - Set Up DOS Memory

115

svcMemLink - Link Segment Selectors

svcMemLink

CALLING SEQUENCE:

XOSSVC svcMemLink(long newselect, long oldselect, long type);

VALUE RETURNED:

This call returns the selector used (high 16-bits are 0) if normal or a nega-
tive error code if an error occurred.

DESCRIPTION:

This system call creates a new segment which references the same physi-
cal memory as an existing segment. It is most often used to create code
and data spaces which map the same physical memory, allowing programs
to appear to use only a single segment. It is also used to map user seg-
ments to exec mode segments for privileged programs which need to ac-
cess kernel data and to allow protected mode user code access to the
virtual-86 mode segment of the same process.

The argument newselect specifies a selector to link to the existing seg-
ment. A value of 0 means to allocate a new selector. The argument
oldselect specifies the selector for the existing segment. It must reference
an existing segment and can be a value of 0xFFF8 to 0xFFFF to reference
the virtual-86 mode segment. It can reference an exec mode segment if the
caller has sufficient privileges for the access requested (read or write). The
argument type specifies the segment type for the linked segment, which
does not have to be the same as that of the segment being linked to. See
the description of the svcMemCreate system call for a definition of the
segment type values.

EXAMPLES:

XOS Programmer's Guide
svcMemLink - Link Segment Selectors

116

svcMemLinkShr - Link to Shared Section

svcMemLinkShr

CALLING SEQUENCE:

XOSSVC svcMemLinkShr(void far *base, char far *name, long level);

VALUE RETURNED:

This call returns the section ID of the shared section that was linked (a
positive number) if normal or a negative error code if an error occurred.

DESCRIPTION:

This system call maps an existing shared memory section into the process’
address space. This effectively creates a new memory section in the
caller’s address space. The size of this memory section is the size of the
shared section and cannot be changed, except it can be set to 0 to unmap
the shared section. The segment specified for the base address must exist.
The section being linked to must have been previously created by some
process with the svcMemConvShr system call, and must have been linked
by at least one process at all times since it was created.

The argument base specifies the base address for the section in the callers
process. Note that a shared section can be mapped at any base address, in-
dependent of the address where it was created. The argument name speci-
fies the name of the segment, as created by the svcMemConvShr system
call. The argument level determines the protection level of the segment.
See the description of the svcMemConvShr call for a explanation of the
use of this argument.

EXAMPLES:

Memory System Calls - Chapter 10
svcMemLinkShr - Link to Shared Section

117

svcMemMap - Map Physical Section

svcMemMap

CALLING SEQUENCE:

XOSSVC svcMemMap(void far *base, long phys, long type, long size);

VALUE RETURNED:

This call returns the actual amount of memory mapped(in bytes) if normal
or a negative error code if an error occurred.

DESCRIPTION:

This function maps physical memory to the caller’s address space. This ef-
fectively creates a new memory section. The size of this memory section
is the size specified by thesizeargument and cannot be changed, except
that it can be set to 0 to unmap the section. The segment specified for the
base address must exist. A process must have the PHYMEM privilege to
issue this call.

The argumentbasespecifies the base address of the memory section to be
created. The argumentphys specifies the starting physical address. The
type of the memory section created is specified by thetypeargument. See
the description of the svcMemChange system call for a definition of the
memory section type value. The amount of memory to map is specified in
thesizeargument.

EXAMPLES:

XOS Programmer's Guide
svcMemMap - Map Physical Section

118

svcMemMove - Move Memory Section

svcMemMove

CALLING SEQUENCE:

XOSSVC svcMemMove(void far *obase, void far *nbase);

VALUE RETURNED:

The value returned is the positive size in bytes of the memory section
moved if normal or a negative error code if an error occurred.

DESCRIPTION:

This function moves a memory section (msect) for one segment and offset
to another or to a different offset in the same segment. The move is done
by changing the memory mapping data; no actual data is copied, so the op-
eration is fairly efficient. The address space to which the section is being
moved must be empty or an ER_MACFT error will result. This means that
the new position cannot overlap the old position. If an overlap move is
necessary, it can be done in two steps: first moving the section to an un-
used part of some segment’s address space, and then moving it to the de-
sired final position. The first argument,obase, specifies the original base
address of the memory section to move. The second argument,nbase,
specifies the new base address for the memory section. The segment refer-
enced by the selector of the new base address must exist.

EXAMPLES:

Memory System Calls - Chapter 10
svcMemMove - Move Memory Section

119

svcMemNull - Map Null Memory

svcMemNull

CALLING SEQUENCE:

XOSSVC svcMemNull(void far *base, long pagebits, long size);

VALUE RETURNED:

This call returns the actual amount of memory mapped if normal or a neg-
ative error code if an error occurred.

DESCRIPTION:

This system call creates a memory section (msect) at the address specified
by the base argument (rounded down to the beginning of a 4096 byte
page). The characteristics of the pages allocated are given by thepagebits
argument as follows:

Name Bit Meaning
PG$VIRTUAL 3 Virtual
PG$WRITE 1 Writable

0 Must be 1

The size of the msect is specified by the value of the size argument
(rounded up to whole 4096 pages). The msect created is filled with nonex-
istent memory pages. Bytes on these pages will usually be read as 0xFF.
The pages mapped are actual non-existent physical pages, so the actual
value read depends on the behavior of the hardware. Any data stored on
these pages will be lost.

This system call is useful when it is necessary to avoid memory traps
when unallocated memory is referenced.

EXAMPLES:

XOS Programmer's Guide
svcMemNull - Map Null Memory

120

svcMemPageType - Change Memory Page Type

svcMemPageType

CALLING SEQUENCE:

XOSSVC svcMemPageType(void far *base, long bottom, long top, long type);

VALUE RETURNED:

This call returns 0 if normal or a negative error code if an error occurred.

DESCRIPTION:

This system call changes the type of one or more contiguous memory
pages within a memory section. This function is most often used to set
pages to read only, to change the allocation of real pages to virtual, or to
force virtual pages to be allocated in physical memory.

The first argument, base, specifies the base address of the memory section
containing the pages to be changed. The second argument, bottom, speci-
fies the offset part of the address of the first page within the memory sec-
tion to change. The third argument, top, specifies the offset part of the
address of the first page within the memory section to not change. The
fourth argument, type, specifies the new type for the pages. See the de-
scription of the svcMemChange" system call for a definition of the valid
values for the page type.

Setting the PG$VIRTUAL bit to 0 for a page which was physically allo-
cated causes the page (but not the address space) to be deallocated. The
next time an address on the page is touched by the program, a new page
containing all 0s will be allocated and mapped to that space. Setting the
PG$VIRTUAL bit to 0 for a page which was not physically allocated has
no effect. Setting the PG$VIRTUAL bit to 1 for a page which was not
physically allocated causes a page containing all 0s to be allocated and
mapped to that page. This is equivalent to touching the page. Setting the
PG$VIRTUAL bit to 1 for a page which was physically allocated has no
effect.

Changing the value of PG$WRITE bit changes the writability of the page
without affecting its contents.

EXAMPLES:

Memory System Calls - Chapter 10
svcMemPageType - Change Memory Page Type

121

svcMemRemove - Remove Segment

svcMemRemove

CALLING SEQUENCE:

XOSSVC svcMemRemove(long select);

VALUE RETURNED:

This call returns 0 if normal or a negative error code if an error occurred.

DESCRIPTION:

This system call removes the segment specified by the selector given in
the select argument. If any memory sections are allocated in the segment,
they are all deallocated before the segment is removed. This system call is
not valid in virtual-86 mode.

EXAMPLES:

XOS Programmer's Guide
svcMemRemove - Remove Segment

122

svcMemRmvMult - Remove Multiple Segments

svcMemRmvMult

CALLING SEQUENCE:

XOSSVC svcMemRmvMult(long data);

VALUE RETURNED:

This call returns 0 if normal or a negative error code if an error occurred.
It is not an error if the segment specified for function 1 does not exist.

DESCRIPTION:

This system call removes multiple segments. The function is specified by
bits 31 through 24 of the data argument. Bits 15 through 0 provide addi-
tional data for some of the functions. The functions are described below.

0. Remove all segments. All local memory segments allocated by the
process are given up.

1. Remove all but one segment. The low order 16 bits of the data argu-
ment specifies the selector for the segment to keep (must be a local
segment). All other local segments are given up.

2. Remove all but real mode segment. All segments except the real
mode segment are given up.

3. Remove DPMI segments. Removes all DPMI segments for the
DPMI client specified by the low order 6-bits of thedataargument.
These are all segments whose descriptors were allocated with the
svcMemDescAlloc system call.

If this system call is executed from a segment which is given up, a seg-
ment not present trap will result when it attempts to return. This implies
that function 0 can only be executed from a global segment and thus can-
not be directly executed by user programs. This system call is used by the
svcIoRun function which loads a program into the same process and by
the DOS emulator to give up DPMI memory when terminating a DPMI
client. It is normally not executed by user programs..

EXAMPLES:

Memory System Calls - Chapter 10
svcMemRmvMult - Remove Multiple Segments

123

svcMemSegType - Change Segment Type

svcMemSegType

CALLING SEQUENCE:

XOSSVC svcMemSegType(long select, long type);

VALUE RETURNED:

This call returns 0 if normal or a negative error code if an error occurred.

DESCRIPTION:

This function is used to change the type of an existing segment. The type
of the segment specified by the argument select is set to the value speci-
fied by the argumenttype. See the description of the svcMemCreate sys-
tem call for definition of the valid segment types. This system call is not
valid in virtual-86 mode.

EXAMPLES:

XOS Programmer's Guide
svcMemSegType - Change Segment Type

124

svcMemWPFunc - Watchpoint Functions

svcMemWPFunc

CALLING SEQUENCE:

XOSSVC svcMemWPFunc(long function, long bits);

VALUE RETURNED:

The value returned depends on the function if normal or is a negative error
code if an error occurred.

DESCRIPTION:

The system call returns the status of the process’ watchpoints or clears
watchpoints.

A function value of 1 returns the status of the watchpoints for the process
and clears the triggered state of the watchpoints indicated by thebits argu-
ment. If bit 0 is set, watchpoint 0 is cleared, if bit 1 is set, watchpoint 1 is
cleared, etc. If a bit is not set, the triggered state of the corresponding
watchpoint is not changed.

In the value returned, bit 0 gives the status of watchpoint 0, bit 1 of
watchpoint 1, etc. A set bit indicates that the corresponding watchpoint has
been triggered. Attempting to clear the triggered state of a watchpoint
which is not triggered or is not set is not an error.

A function value of 2 removes the indicated watchpoints. If bit 0 is set,
watchpoint 0 is removed, if bit 1 is set, watchpoint 1 is removed, etc. If a
bit is not set, the corresponding watchpoint is not removed. A value of 0 is
returned. Attempting to remove a watchpoint which is not set is not an er-
ror.

EXAMPLES:

Memory System Calls - Chapter 10
svcMemWPFunc - Watchpoint Functions

125

svcMemWPSet - Set Watchpoint

svcMemWPSet

CALLING SEQUENCE:

XOSSVC svcMemWPSet(long type, long size void far *address);

VALUE RETURNED:

The value returned is a watchpoint number if normal or a negative error
code if an error occurred.

DESCRIPTION:

This system call sets watchpoints. The type argument specifies the type of
the watchpoint as follows.

Name Value Meaning
WPT_EXECUTE 1 Trigger when instruction executed
WPT_WRITE 2 Trigger when location modified
WPT_ACCESS 3 Trigger when location accessed

The size argument specifies the size (in bytes) of the item in memory be-
ing monitored. Valid values are 1, 2, and 4. The value is ignored for
WPT_EXECUTE watchpoints. The address argument specified the ad-
dress for the watchpoint. The offset part of this address must be even
modulo the value of the size argument. The size of WPT_EXECUTE
watchpoints is always 1.

Because of hardware restrictions, only 4 watchpoints can be set.

EXAMPLES:

XOS Programmer's Guide
svcMemWPSet - Set Watchpoint

126

Chapter 11

I/O Parameters

A number of the I/O system calls use a device parameter list. This is a data structure
consisting of a sequence of device parameter items, each of which specifies a func-
tion (get, set, or both get and set), a value description (format and length), a parame-
ter index, and a value. The parameter list provides a general mechanism for reading
or changing the values of various parameters associated with a device. Each param-
eter specification consists of a 4 byte header followed by a variable length data field.
The format of the header is:

First byte Second byte Third byte Fourth byte

Function & format Value size Parameter index

The first byte specifies the function to perform and the value format. It is described
in detail in Table 11.1.

I/O Parameters - Chapter 11

127

Table 11.1 First I/O Parameter Header Byte
Bit Name Set by Meaning
7 SET User 1 if should set value of parameter
6 GET User 1 if should get value of parameter
5 ERROR System 1 if error associated with this parameter
4 Not used
3-0 FORMAT User Value format as follows:

Value Name Meaning
0 Not used
1 DECV Decimal value
2 HEXV Hex value
3 OCTV Octal value
4 BINV Binary value
5 DECB Decomal bytes
6 HEXB Hex bytes
7 OCTB Octal bytes
8 VERN Version number
9 TIME Time value
10 DATE Date value
11 DT Date/time value
12 DATAB Data bytes
13 DATAS Data string
14 TEXT Text bytes
15 STR String value

The value format field provides a fairly detailed specification of the type of value as-
sociated with the parameter. The current version of XOS does not differentiate be-
tween types 1 through 11, but simply treats them as general numeric values. Any of
these values can be specified whenever a numeric value is called for. It is suggested
that some effort be made to match the type with the specific type of value actually
used, however, since future versions of XOS may use this information. Value types
of 1 through 12 and 14 indicate a value which is stored in the value field which im-
mediately follows the header. Value types of 13 and 15 indicate a value which is
stored in a buffer which is specified by a buffer descriptor which immediately fol-
lows the header.

The C language symbols for the function bits are generated by prefixing PAR_ to the
names given in the table above. The assembler names are generated by prefixing
PAR$. The C and assembler names for the value formats are generated by prefixing
REP_ to the name given above.

XOS Programmer's Guide

128

The second header byte contains the length of the value, in bytes. If a shorter value is
specified than is needed when setting a parameter value, the value is zero extended
to the necessary length. If a shorter value field than is expected is specified when
getting a value and the actual value to be returned will fit in the field specified with-
out truncation, the value is stored. If the value would be truncated, an ER_PARMS
error is returned for the I/O operation and the PAR$ERROR bit is set in the parame-
ter. When the value type is REP_STR, the second byte is not used and should con-
tain 0. In this case, the value field consists of an 8 byte far pointer (high 2 bytes of the
selector part are not used) which points to a buffer containing the string value (if
PAR$SET set) or to receive the string value (if PAR$GET set), followed by two 2
byte values. The first of these values specifies the length of the buffer and the second
specifies the length of the string in the buffer. The buffer length value must be set by
the caller before issuing the system call. The string length value must be set by the
caller if PAR$SET is specified. It is set by the system to indicate the actual length of
the string returned if PAR$GET is specified.

The next two bytes contain the 16-bit parameter index value. This value indicates
the parameter whose value is being set or read. Parameter index values of 0x8000 or
less indicate global parameters which have the same meaning for all devices (al-
though not all global parameters are legal for all devices). Parameter index values
greater than 0x8000 indicate private parameters which only apply to devices in a
particular class.

Table 11.2 summarizes the global parameters. The function (fnc) field indicates the
valid function which can be used with the parameter (G = GET allowed, S = SET al-
lowed, V = SET allowed but used to verify rather than change value). The type field
indicates the minimum value size that will accept all possible values for the GET
function. Asmaller value size can be used when it is known the value being obtained
will fit in the smaller size or when setting to a value which will fit in the smaller size.

Table 11.2 - Summary of I/O parameters
Name Index Fnc Format Size Description

FILOPTN 0x0001 GS HEXV 4 File specification option bits
FILSPEC 0x0002 GS STR 1024 File specification string
DEVSTS 0x0003 GS HEXV 4 Device status
UNITNUM 0x0004 GS DECV 4 Unit number
GLBID 0x0005 GS DATAS 16 Global device ID
DELAY 0x0006 GS HEXV 4 I/O delay value (fractional days)
TIMEOUT 0x0007 GS HEXV 4 I/O time-out value (fractional

days)
INPSTS 0x0008 GS DECV 1 Device input ready status

I/O Parameters - Chapter 11

129

Table 11.2 - Summary of I/O parameters
Name Index Fnc Format Size Description

OUTSTS 0x0009 GS DECV 1 Device output ready status
INPQLMT 0x000A GS DECV 1 Input queue limit
OUTQLMT 0x000B GS DECV 1 Output queue limit
SIGVECT1 0x000C GS DECV 1 First signal vector
SIGVECT2 0x000D GS DECV 1 Second signal vector
SIGDATA 0x000E GS HEXV 4 Signal data
NUMOPEN 0x000F GS DECV 2 Number of times device is open
BUFRLMT 0x0010 GS DECV 2 Internal buffering limit
DIRHNDL 0x0101 S HEXV 2 Directory handle for search (old

name if rename)
SRCATTR 0x0102 GS HEXV 2 File attributes for search
FILATTR 0x0103 GS HEXV 2 File attributes
DIROFS 0x0104 GS DECV 4 Directory offset for search
ABSPOS 0x0105 GS DECV 4 Absolute position in file
RELPOS 0x0106 GS DECV 4 Relative position in file (returns

absolute)
EOFPOS 0x0107 GS DECV 4 Position in file relative to EOF (re-

turns absolute)
VBOF 0x0108 GS DECV 4 Virtual beginning of file position
LENGTH 0x0109 GS DECV 4 Written length of file (bytes)
REQALLOC 0x010A GS DECV 4 Request file space allocation

(bytes)
RQRALLOC 0x010B GS DECV 4 Require file space allocation

(bytes)
GRPSIZE 0x010C GS DECV 4 Allocation group size (bytes)
ADATE 0x010D GS HEXV 8 Last access date/time
CDATE 0x010E GS HEXV 8 Creation date/time
MDATE 0x010F GS HEXV 8 Modify date/time
PROT 0x0110 GS HEXV 4 File protection
OWNER 0x0111 GS STR 16 Owner name
USER 0x0112 S STR - User name for access
SETLOCK 0x0113 GS HEXV 8 Set file lock
CLRLOCK 0x0114 GS HEXV 8 Clear file lock
CLSTIME 0x0115 GS HEXV 4 Close time value
CLSNAME 0x0116 GS STR 256 Close name
CLSMSG 0x0117 GS TEXT 16 Close message destination
SHRPARMS 0x0118 GS HEXV 4 File sharing parameter values
ACSNETWK 0x0119 S DECV 0 Use network access field
TRMSINPMODE 0x0201 GS HEXV 4 Set input modes
TRMCINPMODE 0x0202 GS HEXV 4 Clear input modes

XOS Programmer's Guide

130

Table 11.2 - Summary of I/O parameters
Name Index Fnc Format Size Description

TRMSOUTMODE 0x0203 GS HEXV 4 Set output modes
TRMCOUTMODE 0x0204 GS HEXV 4 Clear output modes
TRMBFRLIMIT 0x0205 GS DECV 4 Input buffer limit value
TRMCLRBUFR 0x0206 S DECV 1 Clear buffer(s)
TRMCURTYPE 0x0207 GS HEXV 2 Cursor type
TRMCURPOS 0x0208 GS HEXV 4 Cursor position
TRMDISPAGE 0x0209 GS DECV 1 Display page
TRMSPMODEM 0x020C S HEXV 1 Modem control
TRMSETDFC 0x020D S DATAS - Set data forwarding characters
TRMCLRDFC 0x020E S DATAS - Clear data forwarding characters
TRMLSTDFC 0x020F GS DATAS - Set or clear data forwarding char-

acters
TRMALLDFC 0x0210 GS DATAS - Set or clear all data forwarding

characters
TRMCCVECT 0x0211 GS DECV 2 Control-C vector
TRMCPVECT 0x0212 GS DECV 2 Control-P vector
DSKFSTYPE 0x0301 G DECV 1 File system type
DSKSECTSIZE 0x0302 G DECV 2 Sector size
DSKCLSSIZE 0x0303 G DECV 1 Cluster size
DSKTTLSPACE 0x0304 G DECV 4 Total space (in clusters)
DSKAVLSPACE 0x0305 G DECV 4 Available space (in clusters)
DSKNUMHEAD 0x0306 G DECV 1 Number of heads
DSKNUMSECT 0x0307 G DECV 1 Number of sectors
DSKNUMCYLN 0x0308 GS DECV 4 Number of cylinders
TAPRECMIN 0x0401 G DECV 4 Minimum record length
TAPRECMAX 0x0402 G DECV 4 Maximum record length
NETSUBMASK 0x0501 G HEXV 4 Sub-unit bit mask
NETPROTOCOL 0x0502 GS HEXV 2 Network protocol
NETLCLPORT 0x0503 GS DECV 2 Network local port number
NETRMTHWAS 0x0504 GS HEXV 8 Network remote hardware address

(send)
NETRMTHWAR 0x0505 GS HEXV 8 Network remote hardware address

(receive)
NETRMTNETAS 0x0506 GS HEXV 4 Network remote network ad-

dress(send)
NETRMTNETAR 0x0507 GS HEXV 4 Network remote network address

(receive)
NETRMTPORTS 0x0508 GS DECV 2 Network remote port number

(send)
NETRMTPORTR 0x0509 GS DECV 2 Network remote port number (re-

ceive)

I/O Parameters - Chapter 11

131

Table 11.2 - Summary of I/O parameters
Name Index Fnc Format Size Description

NETDSTNAME 0x050A GS STR 256 Network destination name
NETSMODE 0x050B GS HEXV 4 Set network mode bits
NETCMODE 0x050C GS HEXV 4 Clear network mode bits
NETRCVWIN 0x050D GS DECV 4 Network receive window size
IPMRMTPID 0x0601 GS HEXV 4 IPM remotePID
DGLCLADDR 0x0701 GS STR 64 Datagram local address
DGRMTADDRS 0x0702 GS STR 64 Datagram remote address (send)
DGRMTADDR 0x0703 G STR 64 Datagram remote address (receive)
RUNCMDTAIL 0x1001 S STR - Command tail (argumant list)
RUNDEVLIST 0x1002 S DATAS - Device list
RUNENVLIST 0x1003 S STR - Additional environment data
RUNDEBUGBFR 0x1004 G DATAS *** Buffer for debug data
RUNADDRESS 0x1005 GS HEXV 8 Load address
RUNRELOCVAL 0x1006 GS HEXV 4 Relocation value
RUNFCB1 0x1007 S DATAS 12 First DOS FCB
RUNFCB2 0x1008 S DATAS 12 Second DOS FCB
RUNACTPRIV 0x1009 S STR - Active privileges for child
RUNAVLPRIV 0x100A S STR - Available privileges for child
RUNWSLIMIT 0x100C S DECV 4 Working set size limit for child
RUNWSALLOW 0x100D S DECV 4 Working set size allowed for child
RUNTMLIMIT 0x100E S DECV 4 Total user memory limit for child
RUNTMALLOW 0x100F S DECV 4 Total user memory allowed for

child
RUNPMLIMIT 0x1010 S DECV 4 Protected mode memory limit for

child
RUNPMALLOW 0x1011 S DECV 4 Protected mode memory allowed

for child
RUNRMLIMIT 0x1012 S DECV 4 Real mode memory limit for child
RUNRMALLOW 0x1013 S DECV 4 Real mode memory allowed for

child
RUNOMLIMIT 0x1014 S DECV 4 Overhead memory limit for child
RUNOMALLOW 0x1015 S DECV 4 Overhead memory allowed for

child
CLASS 0x8000 S TEXT - Device class

Even though these I/O parameters are all defined for all devices in the system, some
of them apply mainly to specific types of devices. When a given parameter does not
apply to a device, the parameter will either be ignored (if the result of ignoring it
would be mostly benign) or will generate an ER_PARMF error (if ignoring it would
produce significantly different behavior than expected). For example, most of the

XOS Programmer's Guide

132

terminal specific global parameters are ignored by disk devices, allowing terminal
specific output to be redirected to a disk file with more or less reasonable results.

The following sections provide detailed descriptions of each global parameter.

Common Parameters

Common parameters apply to all devices in the system. All devices accept all of
these parameters.

IOPAR_FILOPTN = 0x0001 - File option bits

This parameter is used to set the file option bits. These bits specify which
parts of the device name and file specification are to be stored in the file
specification string (see IOPAR_FILSPEC on page 134). This value may
only be set. It may be specified for any I/O operation, but complete infor-
mation is returned only for operations which act on a file specification
(open, delete, rename, etc.). Only the FO$DEVNAME, FO$DOSNAME,
or FO$VOLNAME bits are used if the I/O operation does not act on a file
specification. It is ignored if the IOPAR_FILSPEC parameter is not also
specified. It must be specified as having a numeric value. The maximum
useful length of the value is 4 bytes. The value is bit encoded as follows
(all bits not listed are reserved for future use and should always be set to
0):

Bit Name Meaning
31 FO$NOPREFIX Do not insert prefix codes
23 FO$PHYNAME Return physical device name even if

rooted name
22 FO$DOSNAME Return DOS disk name
21 FO$VOLNAME Return disk volume name
20 FO$XOSNAME Return XOS device name
19 FO$NODENUM Return network node number
18 FO$NODENAME Return network node name
17 FO$NODEPORT Return network node port number
15 FO$RPHYNAME Return remote physical device name even

if rooted name
14 FO$RDOSNAME Return remote DOS disk name
13 FO$RVOLNAME Return remote disk volume name
12 FO$RXOSNAME Return remote XOS device name

I/O Parameters - Chapter 11

133

Bit Name Meaning
11 FO$PATH Return file path
10 FO$FILENAME Return file name and extension
7 FO$ATTR Return file attribute bytes
6 FO$VERSION Return file version number (VAX/VMS

file systems only)
0 FO$MASK Return search mask

IOPAR_FILSPEC = 0x0002 - File specification string

This parameter is used to specify the buffer to receive the file specification
string, as requested by the IOPAR_FILOPTN parameter. It can be speci-
fied with the PAR$GET function only. The string stored in the buffer con-
sists of the parts of the device and file specification as requested by the
value of the IOPAR_FILOPTN parameter, with each optionally preceded
by a prefix code. If all bits except for FO$ATTR and FO$MASK are set,
the string returned forms the canonical file specification for the file being
operated on (after prefix bytes are stripped) and can always be used as an
argument to specify that file (the canonical file specification is the com-
plete name, including the device, path, filename, extension, and version
number. No logical names are permitted in the canonical specification). If
the IOPAR_FILOPTN parameter is not specified, a null string is returned
as the value of this parameter. The prefix byte values are summarized be-
low.

Name Value Description

FS_MASK 0xD0 Search mask follows

FS_MASKAST 0xD1 * match is next

FS_MASKQUES 0xD2 ? match is next

FS_MASKPER 0xD3 period is next

FS_RTDNAME 0xE0 Rooted device name follows

FS_DOSNAME 0xE1 DOS disk name follows

FS_VOLNAME 0xE2 Volume name follows

FS_XOSNAME 0xE3 XOS device name follows

FS_NODENUM 0xE4 Node number follows

FS_NODENAME 0xE5 Node name follows

FS_NODEPORT 0xE6 Node port number follows

FS_RRTDNAME 0xE8 Remote rooted device name follows

FS_RDOSNAME 0xE9 Remote DOS disk name follows

FS_RVOLNAME 0xEA Remote volume name follows

XOS Programmer's Guide

134

Name Value Description

FS_RXOSNAME 0xEB Remote XOS device name follows

FS_PATH 0xF0 Path follows

FS_FILENAME 0xF1 File name and extension follow

FS_VERSION 0xF2 File version number follows

FS_ATTR 0xF3 File attributes follow

FS_NPATH 0xF8 New path follows

FS_NFILENAME 0xF9 New file name and extension follow

FS_NVERSION 0xFA New file version number follows

FS_TRUNC 0xFE Entry truncated

FS_ESC 0xFF Next byte is literal

The prefix bytes are described in detail below.

Only one of the following four prefix codes will appear. If
FO$XOSNAME is set, then FS_XOSNAME or FS_RTDNAME will al-
ways be present. If FO$VOLNAME is set, then FS_VOLNAME will be
present if the device has a volume name; otherwise FO_DEVNAME will
be present. If FO$DOSNAME is set, then FS_DOSNAME will be present
if the device has a DOS device letter associated with it; FO_VOLNAME
will be present if the device has a volume name; otherwise
FO_DEVNAME will be present.

FS_RTDNAME = 0xE0
Rooted device name follows. The name which follows is a rooted
logical name, followed by a colon.

FS_DOSNAME = 0xE1
Disk DOS name follows. The DOS drive letter associated with the
device follows, followed by a colon.

FS_VOLNAME = 0xE2
Disk volume name follows. The name which follows is the disk vol-
ume name followed by a colon.

FS_XOSNAME = 0xE3
XOS device name follows. The name which follows is the name of
an XOS physical device followed by a colon.

The following two prefix codes are only used when the device is a net-
work device. At most one will appear. If FS$NODENUM is set,
FS_NODENUM will be present. If FS$NODENAME is set,

I/O Parameters - Chapter 11

135

FS_NODENAME will be present if a name is associated with the network
node; otherwise FS_NODENUM will be present.

FS_NODENUM = 0xE4
Network node number follows. The number of the remote node in
dotted decimal notation follows, followed by two colons. For exam-
ple, 200.3.5.2::.

FS_NODENAME = 0xE5
Network node name follows. The domain name of the remote node
fol lows; i t is fo l lowed by two colons (for example:
TOM.SALES.XYZCORP.COM::).

FS_NODEPORT = 0xE6
The network node port number follows. This prefix is only used
when the device is a network device. The report port number used
follows, given as an ASCII decimal value.

The following four prefix codes are only used when the device is a net-
work device. At most one will appear. They describe the remote device be-
ing accessed in the same way as the three device prefix codes describe the
local device.

FS_RDEVNAME = 0xE8
Remote rooted device name follows. The name which follows is a
remote rooted logical name, followed by a colon.

FS_RDOSNAME = 0xE9
Remote disk DOS name follows. The DOS drive letter associated
with the remote device follows, followed by a colon.

FS_RVOLNAME = 0xEA
Remote disk volume name follows. The remote disk volume name
follows, followed by a colon.

FS_RXOSNAME = 0xEB
Remote XOS device name follows. The name which follows is the
name of a remote XOS physical device followed by a colon.

FS_PATH = 0xF0
Path is next - the full directory path follows. It always begins and
ends with the \ character. If the file is in the root directory, the path
consists of a single \ character.

XOS Programmer's Guide

136

FS_FILENAME = 0xF1
File name is next, including the extension. The file name follows.
For DOS and VMS file systems, a period is always included, even if
there is no extension. For UNIX file systems, periods are not special.

FS_VERSION = 0xF2
File version number follows. The file version number follows as a
string of decimal digits. This is only present for files on a VMS file
system.

FS_ATTR = 0xF3
File attribute bytes follow. This is followed by two bytes. The first
byte contains the attribute byte for the file as a binary value and the
second byte always contains the binary value 0 (a future version of
XOS may return additional information in the second byte).

The following three prefix values are returned only by a rename operation.
They provide information about the new file specification.

FS_NPATH = 0xF8
Path for new specification follows. This is the same as FS_PATH ex-
cept it applies to the new file specification.

FS_NFILENAME = 0xF9
New file name follows, including extension. This is the same as
FS_FILENAME except it applies to the new file specification.

FS_NVERSION = 0xFA
New file version number follows. This is the same as FS_VERSION
except it applies to the new file specification.

FS_TRUNC = 0xFE
Entry has been truncated. This will appear as the last byte in the file
specification string if the buffer was too short to hold the entire
string.

FS_ESC = 0xFF
Escape. This indicates that the following byte is a literal character
and not a prefix code. It is used whenever a character with a value be-
tween 0xD0 and 0xFF appears in a file specification.

I/O Parameters - Chapter 11

137

IOPAR_DEVSTS = 0x0003 - Device status

This parameter returns the device status bits. The function must be
PAR$GET and the value must be numeric (REP_HEXV) with a length of
4 bytes. The bits returned are defined as follows:

Bit Name Description

21 DS$UPRNAME File names are forced to upper case

20 DS$LWRNAME File names are forced to lower case

15 DS$SPOOL Device is spooled

14 DS$CONTROL Device is controlling terminal for group

13 DS$NOABORT Device cannot be aborted

12 DS$UNBFRD Device should be unbuffered

10 DS$MAPPED Memory mapped device

9 DS$MLTUSER Multi-user device (any process can open device)

8 DS$DUPLEX Device is full duplex (simultaneous input and output)

7 DS$FILE Device is file structured

6 DS$SODIR Device supports search open directory operation

5 DS$PHYS Physical device

4 DS$REMOVE Removable media device

3 DS$DOUT Device can do direct output

2 DS$DIN Device can do direct input

1 DS$QOUT Device can do queued output

0 DS$QIN Device can do queued input

IOPAR_UNITNUM = 0x0004 - Unit number

This parameter returns the unit status bits. The function must be
PAR$GET and the value must be numeric (REP_HEXV) with a length of
4 bytes. This parameter always returns a value of 0 in the current version
of XOS.

IOPAR_GLBID = 0x0005 - Global device ID

This parameter returns a unique value which identifies a file or device.
The function must be PAR$GET and the value must be numeric
(REP_HEXV) with a length of 16 bytes. The value obtained may be used
to determine if two files which were opened using different file specifica-
tions are really the same file. If the IOPAR_GLBID value for two files is
identical, then the two files are really the same file. If the values are differ-
ent, then the two files are not the same file. This value has no other use.

XOS Programmer's Guide

138

IOPAR_DELAY = 0x0006 - I/O delay value (fractional days)

This parameter specifies a delay value. All queued I/O operations for the
device will be delayed the length of time specified. The delay occurs be-
fore the I/O is done. The value stays in effect until changed. The initial de-
lay value when a device is opened is always 0.

IOPAR_TIMEOUT = 0x0007 - I/O time-out value (fractional days)

This parameter specifies a time out value for an I/O operation. The func-
tion must be PAR$SET and the value must be numeric (REP_HEXV) with
a length of 4 bytes. The value specifies fractional days as an unsigned bi-
nary fraction with the binary point to the left of bit 31. The maximum
value which can be specified is 0x7FFFFFFF, which is just under 12
hours.

IOPAR_INPSTS = 0x0008 - Device input ready status

This parameter returns the input ready status for a device. The value is 1 if
the device has input available (an input operation will return at least one
byte without blocking) or 0 if no input is currently available. Disk devices
always indicate ready unless at end of file. The function must be
PAR$GET and the value must be numeric (REP_HEXV) with a length of
1 byte.

IOPAR_OUTSTS = 0x0009 - Device output ready status

This parameter returns the output ready status for a device. The value is 1
if the device can accept output (an output operation will accept at least one
byte without blocking) or 0 if output is currently busy. Disk devices al-
ways indicate ready unless the disk is full. The function must be
PAR$GET and the value must be numeric (REP_HEXV) with a length of
1 byte.

IOPAR_INPQLMT = 0x000A - Input queue limit

This parameter returns or sets the maximum number of input operations
which can be queued for a device or file. When a device is opened, the in-
put queue limit is initialized to 1, effectively disabling input queuing for
the device. The value of this parameter may be set to a larger value to en-
able the desired level of input queuing. The value set remains in effect un-
til changed or until the device is closed. This parameter is only allowed for
full duplex devices. Specifying it for a half duplex device will result in a
ER_PARMI error. The value must be numeric.

I/O Parameters - Chapter 11

139

IOPAR_OUTQLMT = 0x000B - Output queue limit

This parameter returns or sets the maximum number of output operations
which can be queued for a device or file. When a device is opened, the
output queue limit is initialized to 1, effectively disabling output queuing
for the device. The value of this parameter may be set to a larger value to
enable the desired level of output queuing. The value set remains in effect
until changed or until the device is closed. Since half duplex devices use
the same queue for input and output, this parameter sets the combined
limit for queued input and output requests for such devices. The value
must be numeric.

IOPAR_SIGVECT1 = 0x000C - First signal vector

This parameter returns or sets the value of the first software interrupt vec-
tor for a device. The value must be between 0 and 31 to specify a software
interrupt vector. Specifying this parameter for a device which does not use
it causes an ER_PARMF error. The use of this vector by the device is de-
vice dependent. The value must be numeric with a length of 1 byte.

IOPAR_SIGVECT2 = 0x000D - Second signal vector

This parameter returns or sets the value of the second software interrupt
vector for a device. The value must be between 0 and 31 to specify a soft-
ware interrupt vector. Specifying this parameter for a device which does
not use it causes an ER_PARMF error. The use of this vector by the device
is device dependent. The value must be numeric (REP_HEXV) with a
length of 1 byte.

IOPAR_SIGDATA = 0x000E - Signal data

This parameter returns or sets a value which is associated with the use of
software interrupts by a device. Specifying this parameter for a device
which does not use it causes an ER_PARMF error. The allowable range
and the use of the value are device dependent. The value must be numeric
(REP_DECV) with a length of 4 bytes.

IOPAR_NUMOPEN = 0x000F - Number of times device is open

This parameter returns the number of times the file or device is open. The
function must be PAR$GET and the value must be numeric (REP_DECV)
with a length of 2 bytes.

XOS Programmer's Guide

140

Mass Storage Parameters

The following parameters are specific to mass storage devices. This includes all
DISK class devices and all remote mass storage devices.

IOPAR_DIRHNDL = 0x0101 - Directory handle for search

This parameter specifies the handle of an open directory (see description
for O$ODF) which is to be searched for an operation which uses a file
specification. When this parameter is specified, only the name and exten-
sion of the file specification is used. The device, node, remote device, and
path parts are ignored. This parameter can only be specified for file struc-
tured devices. If the device is not file structured, an ER_PARMF error is
returned. The function must be PAR$SET and the value must be numeric
with a length of 4 bytes.

IOPAR_SRCATTR = 0x0102 - File attributes for search

This parameter specifies the attribute byte value to use when searching for
a file. The bits in the value are interpreted as follows:

Bit Name Meaning
7 A$NORMAL Normal file
4 A$DIRECT Directory
3 A$LABEL Volume label
2 A$SYSTEM System file
1 A$HIDDEN Hidden file

If a bit is set, the corresponding type of file is matched. If A$LABEL is
set, only volume labels will be matched; otherwise all types indicated will
be matched. The value is ignored if a file is being created, in which case
all types are matched to prevent the creation of more than one file with the
same name. This parameter is ignored if the device is not file structured.
The function must be PAR$SET and the value must be numeric with a
length of 1 byte.

IOPAR_FILATTR = 0x0103 - File attributes

This parameter gets or sets the attributes for a file. The bits in the value are
interpreted as follows:

I/O Parameters - Chapter 11
Mass Storage Parameters

141

Bit Name Meaning
7 A$NORMAL Normal file
5 A$ARCH Archive bit (set if file has been modified)
4 A$DIRECT Directory
3 A$LABEL Volume label
2 A$SYSTEM System file
1 A$HIDDEN Hidden file
0 A$RDONLY Read only file

The A$DIRECT and A$LABEL attributes cannot be changed once a file
exists. The other bits can be changed at any time. The normal way to cre-
ate a directory is to specify setting the A$DIRECT attribute and set the
O$CREATE command bit in an open call. This parameter is ignored if the
device is not file structured. The value must be numeric (REP_HEXV)
with a length of 2 bytes. The current version of XOS always stores a value
of 0 in the second byte of the value. This byte may be used in future ver-
sions of XOS to store additional information.

IOPAR_DIROFS = 0x0104 - Directory offset for search

This parameter sets or returns the position in a directory at which a direc-
tory search begins. It can be specified with any operation which involves
searching a directory. It applies only to the operation with which it is spec-
ified. When the PAR$SET bit is set, the value given is used to specify
where the search begins. When the PAR$GET bit is set, the value returned
specifies the position in the directory immediately following the entry for
the file which was matched by the call. A value of 0 specifies the begin-
ning of a directory. Other than this, the meaning of the value is not defined
and may vary for different file systems. The value returned by this param-
eter should only be used as a value when setting this parameter. The value
must be numeric (REP_HEXV) with a length of 4 bytes.

IOPAR_ABSPOS = 0x0105 - Absolute position in file

This parameter returns or sets the absolute position in a file at which data
will be transferred next. The value is the byte offset from the beginning of
the file. This parameter is processed before any I/O is done. If it is speci-
fied with a system call which transfers data, data is transferred starting at
the position specified. The value returned indicates the position at which
the transfer started. The value must be numeric (REP_HEXV) with a
length of 4 or more bytes. The current version of XOS does not support
file lengths greater than 232 bytes, but future versions may support very

XOS Programmer's Guide
Mass Storage Parameters

142

long files on some file systems. In this case, a value longer than 4 bytes
will be required for this parameter.

IOPAR_RELPOS = 0x0106 - Relative position in file

This parameter returns the the absolute position in a file at which data will
be transferred next or sets the position relative to the current I/O position
for a file. The value is the byte offset from the beginning of the file. When
PAR$SET is set, the value specified, taken as a signed number, is added to
the current I/O position. This parameter is processed before any I/O is
done. If it is specified with a system call which transfers data, data is
transferred starting at the position specified. The value returned indicates
the position at which the transfer started. The value must be numeric
(REP_HEXV) with a length of 4 or more bytes. The current version of
XOS does not support file lengths greater than 232 bytes, but future ver-
sions may support very long files on some file systems. In this case, a
value longer than 4 bytes will be required for this parameter.

IOPAR_EOFPOS = 0x0107 - Position in file relative to EOF

This parameter returns the absolute position in a file at which data will be
transferred next or sets the position relative to the end of the file. The
value is the byte offset from the beginning of the file. When PAR$SET is
set, the value specified, taken as a signed number, is added to the length of
the file.

This parameter is processed before any I/O is done. If it is specified with a
system call which transfers data, data is transferred starting at the position
specified. The value returned indicates the position at which the transfer
started. The value must be numeric (REP_HEXV) with a length of 4 or
more bytes. The current version of XOS does not support file lengths
greater than 232 bytes, but future versions may support very long files on
some file systems. In this case, a value longer than 4 bytes will be required
for this parameter.

IOPAR_VBOF = 0x0108 - Virtual beginning of file position

This parameter returns or sets the position in the file which is considered
to be the beginning of the file. Data before this position cannot be ac-
cessed. All file positions are calculated relative the virtual beginning of
file.

I/O Parameters - Chapter 11
Mass Storage Parameters

143

IOPAR_LENGTH = 0x0109 - Written length of file

This parameter returns or sets the written length of a file in bytes. When
PAR$GET is set, the value returned is the written length of the file in
bytes. If this is specified with an I/O operation which will change the
length of the file, the value returned is the length before the I/O operation
is done. When PAR$SET is set, the written length of the file is set to the
value specified. If this value is less than the current written length, the file
is truncated. If it is greater, the file is extended by writing zeros between
the current end of file and the requested position.

If PAR$SET is set and the file has not been opened for output (O$OUT
not set in the open call), an ER_PARMF error is returned. The value must
be numeric (REP_HEXV) with a length of 4 or more bytes. The current
version of XOS does not support file lengths greater than 232 bytes, but fu-
ture versions may support very long files on some file systems. In this
case, a value longer than 4 bytes will be required for this parameter.

IOPAR_REQALLOC = 0x010A - Request file space allocation

This parameter returns the current allocated length of a file in bytes
(PAR$GET set) or requests that the number of bytes specified be allocated
to the file (PAR$SET set). If the requested number of bytes cannot be allo-
cated, all available space is allocated. This parameter is processed before
any I/O is done. If it is specified with a system call which transfers data,
the value returned reflects the amount allocated to the file before the data
is transferred.

The value must be numeric (REP_HEXV) with a length of 4 or more
bytes. The current version of XOS does not support file lengths greater
than 232 bytes, but future versions may support very long files on some file
systems. In this case, a value longer than 4 bytes will be required for this
parameter.

IOPAR_RQRALLOC = 0x010B - Require file space allocation

This parameter returns the current allocated length of a file in bytes
(PAR$GET set) or allocates the number of bytes specified to the file
(PAR$SET set). If the requested number of bytes cannot be allocated, an
ER_DSKFL error is returned. This parameter is processed before any I/O
is done. If it is specified with a system call which transfers data, the value
returned reflects the amount allocated to the file before the data is trans-
ferred.

XOS Programmer's Guide
Mass Storage Parameters

144

The value must be numeric (REP_HEXV) with a length of 4 or more
bytes. The current version of XOS does not support file lengths greater
than 232 bytes, but future versions may support very long files on some file
systems. In this case, a value longer than 4 bytes will be required for this
parameter.

IOPAR_GRPSIZE = 0x010C - Allocation group size

This parameter returns or sets the amount of space allocated (in bytes)
each time space is allocated to a file, except when the
IOPAR_REQALLOC and IOPAR_RQRPALLOC parameters are used.
When a file is opened using the DOS file system, this value defaults to six
times the cluster size for the device. If it is changed with this parameter,
the changed value is only in effect until the file is closed. Other file sys-
tems may save this value as a file attribute and use it when a file is subse-
quently accessed. If a value larger than the maximum value allowed for
the file system is specified, the maximum value is used. The maximum
value for the DOS file system is 256 times the cluster size. The value must
be numeric (REP_DECV) with a length of two bytes.

IOPAR_ADATE = 0x010D - Last access date/time

This parameter returns or sets the date and time at which a file was last ac-
cessed. For file systems which do not keep track of the last access
date/time, this parameter references the modify date/time, if it is kept, or
the creation date/time. For the DOS file system, it references the creation
date/time, which is the only date/time value associated with a file.
Changing this value requires that the caller have the ability to change file
attributes; otherwise an ER_PRIV error is returned. Setting the parameter
for non-file structured devices has no effect; in this case a value of 0 is re-
turned. The value must be numeric (REP_HEXV) with a length of 4 or 8
bytes. If the length is 4 bytes, the value is in the DOS file system date/time
format. If the length is 8 bytes, the value is in the XOS system date/time
format.

IOPAR_CDATE = 0x010E - Creation date/time

This parameter returns or sets the date and time at which a file was cre-
ated. Changing this values requires that the caller have the ability to
change file attributes; otherwise an ER_PRIV error is returned. Setting the
parameter for non-file structured devices has no effect; in this case a value
of 0 is returned. The value must be numeric (REP_HEXV) with a length
of 4 or 8 bytes. If the length is 4 bytes, the value is in the DOS file system

I/O Parameters - Chapter 11
Mass Storage Parameters

145

date/time format. If the length is 8 bytes, the value is in the XOS system
date/time format.

IOPAR_MDATE = x010F - Modify date/time

This parameter returns or sets the date and time at which a file was last
modified. For file systems which do not keep track of the last modified
date/time, this parameter references the creation date/time which is the
case for the DOS file system. Changing this value requires that the caller
have the ability to change file attributes; otherwise an ER_PRIV error is
returned. Setting the parameter for non-file structured devices has no ef-
fect; getting the value in this case returns a value of 0. The value must be
numeric (REP_HEXV) with a length of 4 or 8 bytes. If the length is 4
bytes, the value is in the DOS file system date/time format. If the length is
8 bytes, the value is in the XOS system date/time format.

IOPAR_PROT = x0110 - File protection

This parameter returns or sets the protection values associated with a file.

Since the current version of XOS does not support file protection, this pa-
rameter has no effect for any device.

Setting the parameter for non-file structured devices has no effect; getting
the value in this case returns a value of 0. The value must be numeric
(REP_HEXV) with a length of 4 bytes.

IOPAR_OWNER = 0x0111 - Owner name

This parameter returns or sets the owner name associated with a file.
Changing this value requires that the caller have the ability to change file
attributes; otherwise an ER_PRIV error is returned. Setting the parameter,
for non-file structured devices or for file systems which do not support file
ownership features, has no effect; getting the value in this case returns a
text string containing all nulls. The value must be text (REP_TEXT) with
a length of 16 bytes.

IOPAR_USER = 0x0112 - User name for access

This parameter returns or sets the group name associated with a file.
Changing this value requires that the caller have the SPCUSER privilege;
otherwise an ER_PRIV error is returned. Setting the parameter for non-file
structured devices or for file systems which do not support file ownership
features has no effect; getting the value in this case returns a text string
containing all nulls. The value must be a string (REP_STR) which can
have a length of up to 33 bytes.

XOS Programmer's Guide
Mass Storage Parameters

146

IOPAR_SETLOCK = 0x0113 - Set file lock

This parameter specifies that an area of a file is to be locked. When an
area is locked, no one else accessing the file may lock any area which
overlaps the locked area. It does not restrict other access to the locked re-
gion (such as reading or writing data) in any way. If the some part of the
region is already locked, the operation will be repeated as specified by the
value of the IOPAR_SHRPARMS parameter. If the lock cannot be granted
after the specified number of tries, an ER_LOCK error is returned. The
value of this parameter must be numeric and be 8 bytes in length. The first
4 bytes contain the offset in the file of the first byte of the region to lock
and the second 4 bytes contain the length of the region to lock, in bytes.

IOPAR_CLRLOCK = 0x0114 - Clear file lock

This parameter specifies that an area of a file which is currently locked is
to be unlocked. The area specified must exactly match (both offset and
length) the area specified when the area was locked. The value of this pa-
rameter must be numeric and be 8 bytes in length. The first 4 bytes contain
the offset in the file of the first byte of the region to unlock and the second
4 bytes contain the length of the region to unlock, in bytes.

IOPAR_CLSTIME = 0x0115 - Close time value

This parameter is only used with spooled devices. It is only valid with the
OPEN function. It specifies the length of time (in fractional days) that can
elapse without any IO before the device is automatically closed. Each
spooled device has a default close time which is normally used. This pa-
rameter can be used to override the default value for a single instance of a
spooled device. The value must be numeric with a length of 4 bytes.

IOPAR_CLSNAME = 0x0116 - Close name

This parameter is only used with spooled devices. It is only valid with the
OPEN function. It specifies the name to be used for the spool file when
the device is closed. This name should contain a sequence of 1 or more
#’s. The #’s will be replaced with the sequence number of the spooled file.
The number of #’s indicates the number of digits inserted and thus the
number of unique spooled file names which will be generated. Each
spooled device has a default close name which is normally used. This pa-
rameter can be used to override the default value for a single instance of a
spooled device. The value must be a string.

I/O Parameters - Chapter 11
Mass Storage Parameters

147

IOPAR_CLSMSG = 0x0117 - Close message destination

This parameter is only used with spooled devices. It is only valid with the
OPEN function. It specifies the name to be used as the destination for the
IPM message which is generated when the device is closed. Each spooled
device has a default close message destination which is normally used.
This parameter can be used to override the default value for a single in-
stance of a spooled device. The value must be a string.

IOPAR_SHRPARMS = 0x0118 - File sharing parameters

This parameter specifies the values used when setting file locks (see the
IOPAR_SETLOCK and IOPAR_CLRLOCK IO parameters). The value
must be numeric with a length of 4 bytes. The first two bytes specify the
number of times to retry a lock attempt. The second two bytes specify the
time to delay between attempts, in milliseconds.

IOPAR_ACSNETWK = 0x0119 - Use network access field

This parameter, if present, specifies that file access is to be determined
based on the “network” access field. This parameter will fail with an
ER_PRIV error is the process does not have the ACSNETWK privilege.
The value of this parameter is not used. It should be specified as numeric
with a length of 0.

XOS Programmer's Guide
Mass Storage Parameters

148

Terminal Parameters

The following parameters are specific to terminal devices.

IOPAR_TRMSINPMODE = 0x0201 - Set input mode bits

This parameter sets terminal input mode bits or returns the input mode
bits. When PAR$SET is set, all bits which are set in the value are set in the
terminal input mode bits. When PAR$GET is set, the current terminal in-
put mode bits are returned. The terminal input mode bits are defined as
follows:

Bit Name Meaning
30 TIM_SCNALL Return all scan codes from keyboard, including

key break codes
29 TIM_SCNCODE Return raw scan codes from keyboard (keyboard

mode 3)
28 TIM_PCSCNC Convert keyboard scan codes to PC (keyboard

mode 1) scan codes
27 TIM_PC101 Use PC mode special codes
26 TIM_PCDOS Filter PC scan codes for DOS (changes 0xE0 pre-

fix to 0)
25 TIM_ANSI Return ANSI special codes
24 TIM_ALTPAD Suppress ALT keyboard handling
23 TIM_NOCO Control-O is not special on input
22 TIM_NOCC Control-C is not special on input
15 TIM_DEFER Do not wake up process immediately on image in-

put (wait for full buffer)
9 TIM_ILFACR Insert LF after CR in input stream
8 TIM_RCRBLF Remove CR before LF in input stream
7 TIM_OVER Initial input edit mode is overstrike
6 TIM_DEBUG Debug mode input
5 TIM_CHAR Character mode input
4 TIM_IMAGE Image mode input
3 TIM_XIMAGE Special image mode input
1 TIM_ECHO Echo input

The value must be numeric (REP_HEXV) with a length of at least 4 bytes.

IOPAR_TRMCINPMODE = 0x0202 - Clear input mode bits

This parameter clears terminal input mode bits or returns the input mode
bits. The bits are the same as defined above for the

I/O Parameters - Chapter 11
Terminal Parameters

149

IOPAR_TRMSINPMODE parameter. The value must be numeric
(REP_HEXV) with a length of at least 4 bytes.

IOPAR_TRMSOUTMODE = 0x0203 - Set output mode bits

This parameter sets terminal output mode bits or returns the output mode
bits. When PAR$SET is set, all bits which are set in the value are set in the
terminal output mode bits. When PAR$GET is set, the current terminal
output mode bits are returned. The terminal output mode bits are defined
as follows:

Bit Name Meaning
26 TOM$ANSICM Do ANSI character mapping
9 TOM$ICRBLF Insert CR before LF is output
4 TOM$IMAGE Image mode output

The value must be numeric (REP_HEXV) with a length of at least 4 bytes.

IOPAR_TRMCOUTMODE = 0x0204 - Clear output mode bits

This parameter clears terminal output mode bits or returns the current out-
put mode bits. The bits are the same as defined above for the
IOPAR_TRMSOUTMODE parameter. The value must be numeric
(REP_HEXV) with a length of at least 4 bytes.

IOPAR_TRMBFRLIMIT = 0x0205 - Input buffer limit value

This parameter sets or returns the input buffer limit value. The buffer limit
value specifies the maximum number of characters which will be buffered
in image mode when an input request is active. Setting the buffer limit to 1
is equivalent to clearing the TIM$DEFER input mode bit. More data will
be buffered, up to the actual length of the terminal input buffer, if no input
operation is pending. The value must be numeric (REP_DECV) with a
length large enough to hold the value.

IOPAR_TRMCLRBUFR = 0x0206 - Clear terminal buffer(s)

Setting this parameter (PAR$SET set) causes the buffers indicated by the
value to be cleared. If PAR$GET is set, an ER_PARMF error is returned.
The value is a single byte with the bits interpreted as follows:

Bit Name Meaning
6 CB$OUTPUT Clear output buffer when set
5 CB$INPUT Clear current input buffer when set
4 CB$AHEAD Clear type-ahead buffer when set

XOS Programmer's Guide
Terminal Parameters

150

Bits not specified here are reserved for future use and should be 0. The
value must be numeric (REP_HEXV) with a length of 1 byte.

IOPAR_TRMCURTYPE = 0x0207 - Cursor type

This parameter sets or reports the cursor type for display terminals. It is ig-
nored if specified for a non-display terminal. The first byte of the value
specifies the starting scan line for the alphanumeric mode cursor block. A
value of 0 specifies the bottom line of the character cell and a value of 255
specifies the top line of the character cell. A value of 128 specifies the
middle line of the character cell, etc.

The second byte specifies the top scan line for the cursor block with the
same encoding as the first byte. If the bottom scan line is more than the
top scan line, no cursor is displayed. If the bottom and top scan lines are
equal, a single scan line cursor is displayed. The value must be numeric
(REP_HEXV) with a length of 2 bytes.

IOPAR_TRMCURPOS = 0x0208 - Cursor position

This parameter returns or sets the current cursor position for display termi-
nals. It is ignored if specified for a non-display terminal. The first byte of
the value specifies the column number and the second byte specifies the
row number for the alphanumeric mode cursor. The value must be numeric
(REP_HEXV) with a length of 2 bytes.

IOPAR_TRMDISPAGE = 0x0209 - Display page

This parameter returns or sets the current display page for display termi-
nals. It is ignored if specified for a non-display terminal. The value speci-
fies the current page number. The value must be numeric (REP_DECV)
with a length of 1 byte.

IOPAR_TRMSPMODEM = 0x020C - Modem control

This parameter returns and sets the modem control bits associated with a
serial port. The use of these bits is summerized below.

Name Value Description

DTRVAL 0x01 specifies and returns DTR state

RTSVAL 0x02 specifies and returns RTS state

CTSVAL 0x10 returns CTS state

DSRVAL 0x20 returns DSR state

I/O Parameters - Chapter 11
Terminal Parameters

151

CDVAL 0x80 returns CD state

Other bits are not used and should be 0. The value must be numeric
(REP_HEXV) with a length of 1 byte.

IOPAR_TRMSETDFC = 0x020D - Set data forwarding characters

This parameter sets one or more characters to be data forwarding charac-
ters. The argument is a data string. Each byte in the string specifies a char-
acter which is set to be a data forwarding character.

IOPAR_TRMCLRDFC = 0x020E - Clear data forwarding characters

This parameter sets one or more characters to not be data forwarding char-
acters. The argument is a data string. Each byte in the string specifies a
character which is set to not be a data forwarding character.

IOPAR_TRMLSTDFC = 0x020F - Set or clear data forwarding characters

This parameter sets the data forwarding state for one or more characters.
The argument is a data string, which must contain an even number of
bytes.. Each byte pair in the string specifies a character whose data for-
warding state is to be set. The first byte specifies the character, the second
byte specifies the data forwarding state. A 0 values clears the data for-
warding state. Any other value sets the data forwarding state for the char-
acter.

IOPAR_TRMALLDFC = 0x0210 - Set or clear all data forwarding characters

This parameter sets or clears the data forwarding state of characters using
a bit array. Each byte specifies the data forwarding state of 8 contiguous
characters, with the low order bit specifying the state of the lowest value
character. The states of the lowest valued 8 * N characters are set, where
there are N bytes specified. The arguement is a byte string which can be
up to 32 bytes in length. A 32 byte string specifies the states of all 256
possible characters.

IOPAR_TRMCCVECT = 0x0211 - Control-C vector

This parameter specifies a signal vector which is used to request a signal
whenever ^C is typed on the controlling terminal. It is ignored if the de-
vice is not the controlling terminal for a session. The value must be nu-
meric with a length of 2 bytes.

XOS Programmer's Guide
Terminal Parameters

152

IOPAR_TRMCPVECT = 0x0212 - Control-P vector

This parameter specifies a signal vector which is used to request a signal
whenever ^P is typed on the controlling terminal. It is ignored if the device
is not the controlling terminal for a session. The value must be numeric
with a length of 2 bytes.

I/O Parameters - Chapter 11
Terminal Parameters

153

Disk Parameters

The following parameters are specific to local or remote disk devices. They are all
read-only parameters which are used to obtain various values associated with the
disk. These values are also available as device characteristics and are duplicated
here as I/O parameters to make them easier to access for remote disks. In particular,
these parameters are used to implement the various DOS functions which return
disk information.

IOPAR_DSKFSTYPE = 0x0301 - File structure type

This parameter returns the file structure type. This is the value stored in
the partition table on the disk to identify a partition. The possible values
are as follows:

Name Value Description
0x00 Not file structured

FS_DOS12 0x01 DOS file system with 12-bit FAT tables
FS_DOS16 0x04 DOS file system with 16-bit FAT tables
FS_DOS16H 0x06 DOS file system with 16-bit FAT tables 32MB or larger
FS_DOS32 0x0B DOS file system with 32-bit FAT tables
FS_DOS32X 0x0C DOS file system with 32-bit FAT tables using LBA
FS_DOS16X 0x0E DOS file system with 16-bit FAT tables using LBA
FS_XFS 0x23 XOS native file system
FS_DSS12 0xE1 DOS SpeedStor compatible with 12-bit FAT tables
FS_DSS12L 0xF1 DOS SpeedStor extended with 12-bit FAT tables
FS_DSS16 0xE4 DOS SpeedStor compatible with 16-bit FAT tables
FS_DSS16L 0xF4 DOS Speedstor extended with 16-bit FAT tables

The value must be numeric (REP_HEXV) with a size of at least 1 byte.

IOPAR_DSKSECTSIZE = 0x0302 - Sector size

This parameter returns the sector size (in bytes) for the disk. The value
must be numeric (REP_DECV) with a size of at least 2 bytes.

IOPAR_DSKCLSSIZE = 0x0303 - Cluster size

This parameter returns the cluster size (in sectors) for the disk. If the disk
is not file structured, a value of 0 is returned. The value must be numeric
(REP_DECV) with a size of at least 2 bytes.

XOS Programmer's Guide
Disk Parameters

154

IOPAR_DSKTTLSPACE = 0x0304 - Total space

This parameter returns the total space (in clusters) on the disk. If the disk
is not file structured, a value of 0 is returned. The value must be numeric
(REP_DECV) with a size of at least 4 bytes.

IOPAR_DSKAVLSPACE = 0x0305 - Available space

This parameter returns the currently available space (in clusters) on the
disk. If the disk is not file structured, a value of 0 is returned. The value
must be numeric (REP_DECV) with a size of at least 4 bytes.

IOPAR_DSKNUMHEAD = 0x0306 - Number of heads

This parameter returns the number of heads on the disk. The value must be
numeric (REP_DECV) with a size of at least 1 byte.

IOPAR_DSKNUMSECT = 0x0307 - Number of sectors

This parameter returns the number of sector per track. The value must be
numeric (REP_DECV) with a size of at least 1 byte.

IOPAR_DSKNUMCYLN = 0x0308 - Number of cylinders

This parameter returns the number of cylinders on the disk. The value
must be numeric (REP_DECV) with a size of at least 2 bytes.

I/O Parameters - Chapter 11
Disk Parameters

155

Tape Parameters

The following parameters are specific to tape devices.

IOPAR_TAPRECMIN = 0x0401 - Minimum record length

This parameter specifies or returns the minimum allowed length for a
physical tape record.

IOPAR_TAPRECMAX = 0x0402 - Maximum record length

This parameter specifies or returns the maximum allowed length for a
physical tape record.

IOPAR_TAPRECLEN = 0x0403 - Current fixed record length

This parameter specifies or returns the allowed minimum length for a
physical tape record.

XOS Programmer's Guide
Tape Parameters

156

Network Parameters

The following parameters are specific to network devices. Unless otherwise speci-
fied, these parameters are valid for all devices. Non-network devices ignore at-
tempts to set parameter values and always return a numeric value of 0 or a null
string.

IOPAR_NETSUBUMASK = 0x0501 - Sub-unit bit mask

The value returned for this parameter specifies the sub-units which exist
for a network device. Each subunit provides a physical network connec-
tion. Each network device unit can support a number of such connections.
The value returned is numeric and is bit encoded. If bit 0 is set, sub-unit A
exists, if bit 1 is set, sub-unit B exists, etc. The value should have a length
of at least 4 bytes.

IOPAR_NETPROTOCOL = 0x0502 - Network protocol

This parameter returns or sets the protocol value associated with a network
device which uses an interface which supports multiple protocols. The
value can only be set for devices which directly access raw network data
(such as NETn:). It can be read for any network device which uses an in-
terface which supports multiple protocols. If the device is not a network
device, an ER_PARMI error is returned. If the device does not support
multiple protocols, a value of 0 is returned. In this case, an ER_PARMF
error is returned if the value is set. The value must be numeric
(REP_HEXV) with a length of at least 2 bytes.

IOPAR_NETLCLPORT = 0x0503 - Network local port number

This parameter returns or sets the local port number for a network device
which uses port numbers. If the device is not a network device or does not
use port numbers, an ER_PARMI error is returned. If PAR$SET is set and
bit 31 of the value is set, the low order byte of the port number is not
changed. If bit 31 of the value is set, the value will be incremented repeat-
edly until an acceptable port number is found. If bit 30 of the value is set,
duplicate port numbers are allowed; otherwise an ER_PARMV error is re-
turned if the port number specified is in use. Network devices which use a
port number are assigned a default port number when they are opened.
This parameter can be used to obtain the value of this default port number
or to change it to some other value. For IP devices, the default port num-
ber is always a private port with a value greater than 1024. If a public port
(value less than 1024) is needed, this parameter is used to change the port

I/O Parameters - Chapter 11
Network Parameters

157

number to the desired value. The value must be numeric (REP_HEXV)
with a length of at least 2 bytes.

IOPAR_NETRMTHWAS = 0x0504 - Network remote hardware address
(send)

This parameter returns or sets the remote hardware address. It is usually
used to obtain the value, since the remote hardware address is usually ob-
tained automatically by the low level network routines. The value must be
numeric (REP_HEXV) with a length of at least 8 bytes to guarantee that
all format addresses can be returned.

IOPAR_NETRMTHWAR = 0x0505 - Network remote hardware address (re-
ceive)

This parameter obtains the local network hardware address for a network
device. The value must be numeric (REP_HEXV) with a length of at least
8 bytes to guarantee that all format addresses can be returned.

IOPAR_NETRMTNETAS = 0x0506 - Network remote network address
(send)

This parameter returns or sets the remote node address for a network de-
vice which is used when sending data. This parameter is normally used
when sending datagrams to specify the destination network address of in-
dividual datagrams. The value must be numeric (REP_HEXV) with a
length of at least 4 bytes.

IOPAR_NETRMTNETAR = 0x0507 - Network remote network address (re-
ceive)

This parameter returns the remote network address associated with a net-
work device. This can be either a connection oriented or a datagram de-
vice. This is particularly useful when the node was originally specified
using a domain name and the actual matching network address is needed.
The value must be numeric (REP_HEXV) with a length of at least 4 bytes.

IOPAR_NETRMTPORTS = 0x0508 - Network remote port number (send)

This parameter gets or sets the remote port number used when sending
data for a network device which uses port numbers. It is used when estab-
lishing a connection to a “public” remote port to specify the number of the
public port. It is also be used when sending datagrams to specify the re-
mote port. It can also be used to obtain the remote port number being used.
The value must be numeric (REP_HEXV) with a length of at least 2 bytes.

XOS Programmer's Guide
Network Parameters

158

IOPAR_NETRMTPORTR = 0x0509 - Network remote port number (receive)

This parameter returns the remove network port number associated with a
network device. This can be either a connection oriented or a datagram de-
vice. The value must be numeric (REP_HEXV) with a length of at least 2
bytes.

IOPAR_NETDSTNAME = 0x050A - Network destination name

This parameter returns the actual destination name which was used to
specify as a remote network address. If a destination name was not used, a
null string is returned. The value must be a string (REP_STR). The length
should in general be at least 128 bytes to allow for all possible name for-
mats, although a shorter length can be used if it is known that the name
will be shorter than this.

IOPAR_NETSMODE = 0x050B - Set network mode bits

This parameter sets the specified network mode bits. The value specified,
which must be numeric with a length of 4 bytes, is ored with the current
mode bits value. The table below summerizes the network mode bits.

Name Value Description

IDLEMARK 0x00004000 Send mark when idle

SENDSYNC 0x00002000 Send sync pattern before data packets

BRDCST 0x00000800 Broadcast next packet

PUSH 0x00000020 Do push after TCP output

CONP 0x00000010 Push is conditional (Nagel algorithm

To form the C language symbol for each bit, prefix the name with
NMODE_. TO form the assembler symbol for each bit, prefix the name
with NMODE$. The value returned is the current value of all the network
mode bits.

IOPAR_NETCMODE = 0x050C - Clear network mode bits

This parameter clears the specified network mode bits. The value speci-
fied, which must numeric with a length of 4 bytes, is complemented and
anded with the current mode bits value. See the IOPAR_NETSMODE
above for a description of the network mode bits. The value returned is the
current value of all the network mode bits.

I/O Parameters - Chapter 11
Network Parameters

159

IOPAR_NETRCVWIN - 0x050D - Network receive window size

This parameter set or returns the receive window size. This value is either
the maximum number of bytes or frames in the receive window, depend-
ing on the protocol type. For protocols which negotiate a window size, this
value can only be set when the network device is opened and then only
represents a target value. Negotiation may result in a different value, de-
pending on the protocol type. Reading this parameter always returns the
actual (negotiated) value.

XOS Programmer's Guide
Network Parameters

160

Interprocess Message Parameters

The following parameter is specific to IPM (inter-process message) devices.

IOPAR_IPMRMTPID = 0x0601 - IPM remote PID

This parameter returns the PID of the sender or receiver of an IPM mes-
sage. It is only valid when specified with a datagram input or output func-
tion for an IPM device. The value must be numeric (REP_HEXV) with a
length of at least 4 bytes.

I/O Parameters - Chapter 11
Interprocess Message Parameters

161

Datagram Parameters

The following parameters are used by devices which send and receive datagrams. A
datagram is a message which is independently routed.

IOPAR_DGLCLADDR = 0x0701 - Datagram local address

This parameter returns the local address associated with a datagram de-
vice. The value must be a string (REP_STR) with a length of at least 128
bytes.

IOPAR_DGRMTADDR = 0x0702 - Datagram remote address (send)

This parameter returns or sets the remote address used when sending a
datagram. The value must be a string (REP_STR) with a length of at least
128 bytes when getting the value.

IOPAR_DGRMTADDRR = 0x0703 - Datagram remote address (receive)

This parameter returns the remote address from which a datagram was re-
ceived. The value must be a string (REP_STR) with a length of at least
128 bytes.

XOS Programmer's Guide
Datagram Parameters

162

svcIoRun Parameters

The following parameters are used with the svcIoRun and svcSchSpawn system
calls.

IOPAR_RUNCMDTAIL = 0x1001 - Command tail (argument list)

This parameter specifies a string which is passed to the program being
loaded as the command tail. If a DOS program is being loaded, the first
item in the command tail (which is assumed to be the program name) is re-
moved before it is stored in the DOS program segment prefix. Also, the
default FCBs in the program segment prefix are initialized from the sec-
ond and third items from this parameter unless the IOPAR_FCB1 or
IOPAR_FCB2 parameters (which override the respective items from the
command tail) are specified. PAR$SET must be set and PAR$GET must
be clear. The value must be a string (REP_STR).

IOPAR_RUNDEVLIST = 0x1002 - Device list

This parameter specifies a device list which controls which devices are
passed to the program being loaded in a child process. It is ignored if the
program is being loaded in the same process. PAR$SET must be set and
PAR$GET must be clear.

The device list is a list of 8 byte items. The first item specifies the device
for handle 0 in the child process; the second specifies the device for han-
dle 1, etc. The first four bytes of each item specify the handle of the device
in the process issuing the system call or a special code. A value of -1 indi-
cates the end of the list and a value of -2 indicates that no device is to be
passed to the child process for that handle. If the value is not -1 or -2, the
low 30 bits specify the handle. If bit 31 is set, the device is transferred to
the child process. If it is clear, it is duplicated in the child process. Setting
bit 31 has the same effect as closing the device after it is passed to the
child process. If bit 30 is set, ownership of the device is passed to the child
process. Note that this is implied if bit 31 is set. It is only meaningful if
the process issuing the system call is the owner of the device.

If a device is specified, the next four bytes specify the open command bits
for the device. A value of all 0s indicates that the current open commands
associated with the device should be used. If the first four bytes contain -1,
the next 4 bytes are not used. If the first four bytes contain -2, the next 4
bytes are not used but must be present and should contain 0.

I/O Parameters - Chapter 11
svcIoRun Parameters

163

Note that the use of a -1 value to indicate the end of the list is optional.
The end may also be indicated by the value of the string length field in the
parameter. The value must be a string (REP_STR).

IOPAR_RUNENVLIST = 0x1003 - Additional environment data

This parameter specifies a list of environment strings to be defined for the
new process. It consists of a list of null terminated strings, each of which
has the format:

ENVNAME=environment string value

The end of the list is indicated by another null character or by the value of
the string length field in the parameter. The value must be a string
(REP_STR).

IOPAR_RUNDEBUGBFR = 0x1004 - Buffer for debug data

This parameter specifies the location of a buffer to receive information
about values used to relocate data in the program being loaded and initial
register values. This information is useful to debuggers which use separate
symbol table files and must relocate symbol values to match the loaded
program. PAR$GET must be set and PAR$SET must be clear. The format
of the data returned is as follows:

Offset Size Description
0 4 Initial value for EAX
4 4 Initial value for ECX
8 4 Initial value for EDX
12 4 Initial value for EBX
16 4 Initial value for ESP
20 4 Initial value for EBP
24 4 Initial value for ESI
28 4 Initial value for EDI
32 4 Initial value for EPC
36 4 Initial value for EFR
40 4 Initial value for DS
44 4 Initial value for ES
48 4 Initial value for FS
52 4 Initial value for GS
56 4 Initial value for CS
60 4 Initial value for SS
64 4 Total size of loaded program
68 4 Number of address spaces

XOS Programmer's Guide
svcIoRun Parameters

164

Offset Size Description
70 2 Number of msects
72 Start of relocation data item

The relocation data consists of a list of segment selectors, one for each
segment (stored in 4 bytes each) followed by a list of 16 byte msect de-
scription blocks, one for each msect. Each msect description block has the
following format:

Offset Size Description
0 4 Segment number (starting with 1)
4 4 Base offset for msect
8 4 Size of msect (in bytes)
12 4 Not used

The value must be a string (REP_STR). It is suggested that the length be
at least 172 bytes. This will allow for 4 segments and 4 msects. A length
of about 300 bytes should allow for data for the most complex memory
image which can be loaded.

IOPAR_RUNADDRESS = 0x1005 - Load address

This parameter returns or sets the load address for an overlay. The value
must be numeric (REP_HEXV) with a length of 4 bytes.

IOPAR_RUNRELOCVAL = 0x1006 - Relocation value

This parameter returns or sets the relocation value for an overlay. The
value must be numeric (REP_HEXV) with a length of 4 bytes.

IOPAR_RUN_FCB1 = 0x1007 - First DOS FCB

This parameter specifies the address of a buffer containing an image of the
first FCB to be set up for a DOS program. This parameter is ignored if the
program being loaded is not a DOS program. If this parameter is not pres-
ent and a DOS program is being loaded, the first FCB is initialized for the
second item in the IOPAR_ARGUMENT parameter. The value must be a
string (REP_STR) with a string length of 12 bytes.

IOPAR_RUNFCB2 = 0x1008 - Second DOS FCB

This parameter specifies the address of a buffer containing an image of the
second FCB to be set up for a DOS program. This parameter is ignored if
the program being loaded is not a DOS program. If this parameter is not
present and a DOS program is being loaded, the second FCB is initialized

I/O Parameters - Chapter 11
svcIoRun Parameters

165

for the third item in the IOPAR_ARGUMENT parameter. The value must
be a string (REP_STR) with a string length of 12 bytes.

IOPAR_RUNACTPRIV = 0x1009 - Active privileges for child process

This parameter specifies the process privileges which are to be passed to
the child process as its initial active privileges. The privileges are specified
as an ASCII string with the same format as used by the ACTPRIV and
AVLPRIV characteristics for the process class (see Chapter 12). Any priv-
ileges which are not available to the parent or child process are ignored.
The value must be a string (REP_STR).

IOPAR_RUNAVLPRIV = 0x100A - Available privileges for child process

This parameter specifies the process privileges which are to be available to
the child process. The privileges are specified as an ASCII string with the
same format as used by the ACTPRIV and AVLPRIV characteristics for
the process class (see Chapter 12). Any privileges which are not available
to the parent process are ignored. The value must be a string (REP_STR).

IOPAR_RUNWSLIMIT = 0x100C - Working set size limit for child

This parameter specifies the initial working set limit value for the child
process. If the value specified is greater than the maximum value allowed
for the child process (see IOPAR_WSALLOW), the maximum value al-
lowed is used. The value must be numeric (REP_DECV) with a maximum
useful length of 4 bytes.

IOPAR_RUNWSALLOW = 0x100D - Working set size allowed for child

This parameter specifies the maximum working set size allowed for the
child process. If the value is greater than the maximum value allowed for
the parent process, then that maximum value is used. The value must be
numeric (REP_DECV) with a maximum useful length of 4 bytes.

IOPAR_RUNTMLIMIT = 0x100E - Total user memory limit for child

This parameter specifies the initial total user memory limit value for the
child process. If the value is greater than the maximum value allowed (see
IOPAR_TMALLOW), then the maximum value allowed is used. The
value must be numeric (REP_DECV) with a maximum useful length of 4
bytes.

IOPAR_RUNTMALLOW = 0x100F - Total user memory allowed for child

This parameter specifies the maximum total user memory size allowed for
the child process. If the value is greater than the maximum value allowed

XOS Programmer's Guide
svcIoRun Parameters

166

for the parent process, then that maximum value is used. The value must
be numeric (REP_DECV) with a maximum useful length of 4 bytes.

IOPAR_RUNPMLIMIT = 0x1010 - Protected mode memory limit for child

This parameter specifies the initial protected mode memory limit value for
the child process. If the value is greater than the maximum value allowed
(see IOPAR_PMALLOW), then the maximum value allowed is used. The
value must be numeric (REP_DECV) with a maximum useful length of 4
bytes.

IOPAR_RUNPMALLOW = 0x1011 - Protected mode memory allowed for
child

This parameter specifies the maximum protected mode memory size al-
lowed for the child process. If the value is greater than the maximum value
allowed for the parent process, then that maximum value is used. The
value must be numeric (REP_DECV) with a maximum useful length of 4
bytes.

IOPAR_RUNRMLIMIT = 0x1012 - Real mode memory limit for child

This parameter specifies the initial real mode memory limit value for the
child process. If the value is greater than the maximum value allowed (see
IOPAR_RMALLOW), then the maximum value allowed is used. The
value must be numeric (REP_DECV) with a maximum useful length of 4
bytes.

IOPAR_RUNRMALLOW = 0x1013 - Real mode memory allowed for child

This parameter specifies the maximum real mode memory size allowed for
the child process. If the value is greater than the maximum value allowed
for the parent process, then that maximum value is used. The value must
be numeric (REP_DECV) with a maximum useful length of 4 bytes.

IOPAR_RUNOMLIMIT = 0x1014 - Overhead memory limit for child

This parameter specifies the initial overhead memory limit value for the
child process. If the value is greater than the maximum value allowed (see
IOPAR_OMALLOW), then the maximum value allowed is used. The
value must be numeric (REP_DECV) with a maximum useful length of 4
bytes.

IOPAR_RUNOMALLOW = 0x1015 - Overhead memory allowed for child

This parameter specifies the maximum overhead memory size allowed for
the child process. If the value is greater than the maximum value allowed

I/O Parameters - Chapter 11
svcIoRun Parameters

167

for the parent process, then that maximum value is used. The value must
be numeric (REP_DECV) with a maximum useful length of 4 bytes.

XOS Programmer's Guide
svcIoRun Parameters

168

Device Class Parameter

IOPAR_CLASS = 0x8000 - Device class

This parameter is used to get or verify the device class. When PAR$GET
is set, the name of the class of the device is returned. When PAR$SET is
set, the name specified is compared to the name of the class of the device.
If it is different, an ER_PARMV error is returned. If it is the same, an in-
ternal flag is set indicating that the class name has been verified. This flag
must be set before any private device parameters can be used. This is done
to insure that the action of any private parameters will be as expected,
since the same parameter index may represent completely different private
parameters for devices in different classes. The value must be text
(REP_TEXT) with a length of 8 bytes.

The private parameters are described in the sections which describe the specific de-
vice classes to which they apply.

I/O Parameters - Chapter 11
Device Class Parameter

169

Chapter 12

Class Characteristics

This chapter describes the class characteristics for all standard device classes in the
system. A class characteristic is a named item which specifies a value associated
with a device class. Class characteristics are the primary mechanism by which the
user obtains and sets the values of the various items which specify the state and op-
eration of the XOS operating system. They provide a standardized interface which
apply to all device classes.

A device class is the collection of all devices of a specific type. For example, the
TRM device class includes all terminal-like devices. The DISK device class in-
cludes all disk devices, that is, all devices which support local file systems. The defi-
nition of device class is actually more abstract and flexible than these two examples
would indicate. Two of the most significant device classes do not include any actual
devices at all. These are the SYSTEM and PROCESS device classes. The SYSTEM
class is provided to allow the class characteristic mechanism to be used to manipu-
late various values associated with the system as a whole (such as the amount of
memory available or the response of the system to CTL-ALT-DEL). Likewise, the
PROCESS class allows access to values associated with individual processes.

Class characteristics are specified using a class characteristic list. This is a data
structure consisting of a sequence of class characteristic items followed by a byte
containing 0. Each class characteristic item consists of a 10 byte header followed by
a 0 to 32 byte value.

The first header byte specifies the function to perform and the value format. It is de-
scribed in detail in Figure 12.1.

Class Characteristics - Chapter 12

171

Figure 12.1 First - Class Characteristic Header Byte
Bit Name Set by Meaning
7 SET User 1 if should set value of characteristic
6 GET User 1 if should get value of characteristic
5 ERROR System 1 if error associated with this characteristic
4 Not used

3-0 FORMAT User Value format as follows:
Value Name Meaning

0 Not used
1 DECV Decimal value
2 HEXV Hex value
3 OCTV Octal value
4 BINV Binary value
5 DECB Decimal bytes
6 HEXB Hex bytes
7 OCTB Octal bytes
8 VERN Version number
9 TIME Time value
10 DATE Date value
11 DT Date/time value
12 DATAB Data bytes
13 DATAS Data string
14 TEXT Test bytes
15 STR String value

The value format field provides a fairly detailed specification of the type of value as-
sociated with the parameter. The current version of XOS does not differentiate be-
tween types 1 through 11, but simply treats them as general numeric values. Any of
these values can be specified whenever a numeric value is called for. It is suggested
that some effort be made to match the type with the specific type of value actually
used, however, since future versions of XOS may use this information. Value types
of 1 through 12 and 14 indicate a value which is stored in the value field which im-
mediately follows the header. Value types of 13 and 15 indicate a value which is
stored in a buffer which is specified by a buffer descriptor which immediately fol-
lows the header.

The C language symbols for the function bits are generated by prefixing PAR_ to the
names given in the table above. The assembler names are generated by prefixing
PAR$. The C and assembler names for the value formats are generated by prefixing
REP_ to the name given above.

XOS Programmer's Guide

172

The second header byte contains the length of the value, in bytes. If a shorter value is
specified than is needed when setting a characteristic value, the value is zero ex-
tended to the necessary length. If a shorter value field than expected is specified
when getting a value and the actual value to be returned will fit in the field specified
without truncation, the value is stored. If the value would be truncated, an
ER_CHARS error is returned for the I/O operation and the PAR$ERROR bit is set in
the characteristic. When the value type is FMT_STR, the second byte is not used
and should contain 0. In this case, the value field consists of an 8 byte far pointer
(high 2 bytes of the selector part are not used) which points to a buffer containing the
string value (if PAR$SET set) or to receive the string value (if PAR$GET set), fol-
lowed by two 2 byte values. The first of these values specifies the length of the
buffer and the second specifies the length of the string in the buffer. The buffer
length value must be set by the caller before issuing the system call. The string
length value must be set by the caller if PAR$SET is specified. It is set by the system
to indicate the actual length of the string returned if PAR$GET is specified.

The third through tenth bytes of the header contain the ASCII name of the character-
istic. It is not case sensitive. If the name is shorter than 8 characters, the field is filled
with NULL characters.

Class characteristics are accessed using the QFNC_CLSCHAR function of the
svcIoQueue system call, which is described in Chapter 15. A CLSCHAR command
is provided (which is described in the XOS User’s Guide), which provides access to
the class characteristics values from the command line.

This chapter contains a number of tables which summarize the class characteristics
for the various devices. These tables all have the same format. The first column
specifies the name of the characteristic (1 to 8 characters, not case sensitive but
listed by convention as upper case). The second column specifies the format of the
value. This corresponds to the PAR$FORMAT value listed in Figure 12.1, above,
without the FMT_ prefix. The third column specifies the minimum value length
which can contain all possible values of the characteristic. The fourth column con-
tains one or more of the letters g, s, or v. The letter g indicates that a get operation
(PAR$GET set in the first byte of the characteristic) is allowed. The letter s indicates
that a set operation (PAR$SET set in the first byte of the characteristic) is allowed.
The letter v also indicates that a “set” operation is allowed but that it will verify,
rather than change the value.

It should be noted that the interpretation of the format is exactly the same for device
characteristics (see Chapter 13) , and is the same as for device parameters (see Chap-
ter 16), except that the type of numeric format is significant here. A sub-function of
the QFNC_CLASS function allows a program to obtain the format of a characteris-

Class Characteristics - Chapter 12

173

tic, which can then be used to format the value for output. This feature is used by the
CLSCHAR command to display each value in the proper format.

This chapter lists the class characteristics by device class. Technically, there is no re-
lationship between characteristics for different classes which have the same name,
but in practice all characteristics with the same names represent roughly equivalent
values for their respective classes. Programmers implementing new device classes
are strongly encouraged to use the established names but only in the same way they
are used for the standard device classes.

XOS Programmer's Guide

174

SYSTEM Class Characteristics

The SYSTEM device class is a dummy device class which exists only to provide a
mechanism for accessing and changing various values associated with the XOS op-
erating system as a whole. The SYSTEM class characteristics are summarized in Ta-
ble 12.1.

Table 12.1 - SYSTEM Class Characteristics
Name Fnc Format Size Description

AVAILMEM G DECV 4 Available memory (in KB)

DEBUG G TEXT 4 Exec debugger present

DOSVER GS VERN 4 Default DOS emulator version number

HIGHDMA GS HEXV 4 Highest physical address for DMA

INITIAL GS TEXT 4 Run initial command SHELL on startup

KBRESET GS TEXT 4 Can reset system from console keyboard

LOGIN GS TEXT 4 User login required

NUMFLPY G DECV 4 Number of floppy disk units in system

NUMHARD G DECV 4 Number of hard disk units in system

NUMPAR G DECV 4 Number of parallel ports in system

NUMSER G DECV 4 Number of serial ports in system

PROINUSE G DECV 4 Number of processes/shared sections

PROLIMIT GS DECV 4 Limit of number of processes/shared
sections

SELINUSE G DECV 4 Number of global selectors in use

SELNUM G DECV 4 Number of global selectors created

SERNUM G DECV 4 Kernel serial number

SPEED G DECV 4 Processor speed factor

STATE GS HEXV 4 System state

SYSNAME G STR 32 Name of system

TOTALMEM G DECV 4 Total memory in system (in KB)

USERMEM G DECV 4 User memory in system (in KB)

V86BASE GS DECV 4 Base address for virtual-86 image (in
KB)

V86SIZE GS DECV 4 Default size of virtual-86 image (in KB)

XFFINUSE G DECV 4 Number of extended fork frames in use

XFFLIMIT G DECV 4 Limit of number of extended fork frames

XFFMAX GS DECV 4 Maximum extended fork frames in use

XFFNUM G DECV 4 Current number of extended fork frames

Class Characteristics - Chapter 12
SYSTEM Class Characteristics

175

Table 12.1 - SYSTEM Class Characteristics
Name Fnc Format Size Description

XMBAMAX G DECV 28 Maximum number of available exec
buffers

XMBAVAIL G DECV 28 Number of available exec buffers

XMBINUSE G DECV 28 Number of exec buffers in use

XMBMAX G DECV 28 Maximum number of exec buffers in use

XOSVER G VERN 4 XOS version number

The following sections describe each of the SYSTEM class characteristics in detail.

AVAILMEM - Available memory

This read-only class characteristic returns the amount of memory (in KB)
currently available for allocation. The value must be numeric in decimal
format with a length of at least 4 bytes.

DEBUG - Exec debugger present

This read-only class characteristic returns a value of YES if the exec
debugger (XDT) is loaded with the kernel or a value of NO if it is not
loaded. The value must be text with a length of at least 4 bytes.

DOSVER - DOS emulator version number

This class characteristic sets or returns the default DOS emulator version
number. This is the number returned to a DOS program which issues the
get version number DOS system call. Currently, it has no other effect. Fu-
ture versions of XOS may use this value to customize the behavior of the
DOS emulator to match specific versions of DOS. The value must be nu-
meric in hex format with a length of at least 2 bytes.

HIGHDMA - Highest physical address for DMA

This class characteristic specifies the highest physical address for DMA
transfers. The initial value of this class characteristic is 0xFFFFFFFF,
which is the highest possible physical address. This value allows DMA
transfers to any memory on the system. This is correct for most 386/486
machines, but a few have hardware limitations such that DMA transfers to
memory above a certain address will not work correctly. Some machines
will not support DMA transfers to what is referred to as reserved or
shadow memory. This is a small amount of memory (between 128KB and
386KB) which is usually physically mapped just below 16MB. If there is a
problem with DMA transfers on a given machine, setting this value to

XOS Programmer's Guide
SYSTEM Class Characteristics

176

0xF00000 (15MB) will usually correct the problem. Some machines may
require a different value.

INITIAL - Run initial command shell on startup

This class characteristic specifies if the command shell should be run on
screen 1 on the system’s console at startup. This value is only meaningful
at startup time. It can be set using a CLSCHAR or SYSCHAR command
in the STARTUP.BAT file. The value of this characteristic immediately af-
ter STARTUP.BAT is executed is used to determine if a command shell is
started. Valid values are YES and NO. The initial value is NO. The value
must be text with a length of at least 4 bytes.

KBRESET - Can reset system from console keyboard

This class characteristic specifies if the CTL-ALT-DEL key sequence from
the console keyboard causes a system reboot. Valid values are YES and
NO. The initial value is YES, which enables the CTL-ALT-DEL key com-
bination to re-boot the system. Changing this value requires the ADMIN
privilege. The value must be text with a length of at least 4 bytes.

LOGIN - User login required

This class characteristic specifies if the LOGIN feature will be used. A
value of YES indicates that users must specify a user name and password
before using the system. A value of NO indicates DOS style operation
with no formal login required. The initial value is NO. Setting this value to
YES with a command in the STARTUP.BAT file guarantees that no one
will be able to access the system without logging in. The value must be
text with a length of at least 4 bytes.

NUMFLPY - Number of floppy disk units in system

This read-only class characteristic returns the number of floppy disk in the
system. The value must be numeric in decimal format with a length of at
least 1 byte.

NUMHARD - Number of hard disk units in system

This read-only class characteristic returns the number of hard disks in the
system. The value must be numeric in decimal format with a length of at
least 1 byte.

Class Characteristics - Chapter 12
SYSTEM Class Characteristics

177

NUMPAR - Number of parallel ports in system

This read-only class characteristic returns the number of parallel ports in
the system. The value must be numeric in decimal format with a length of
at least 1 byte.

NUMSER - Number of serial ports in system

This read-only class characteristic returns the number of serial ports in the
system. The value must be numeric in decimal format with a length of at
least 1 byte.

PROINUSE - Number of processes/shared sections

This read-only class characteristic returns the number of processes and
shared memory sections currently active in the system. The value must be
numeric in decimal format with a length of at least 4 bytes.

PROLIMIT - Limit of number of processes/shared sections

This class characteristic specifies the maximum number of processes and
shared memory sections which can be active in the system. Making this
value very large does not consume any system resources. It simply serves
as a limit to prevent overloading the system with too many processes or
shared memory sections. The initial value is 10,000, which is effectively
no limit. The value must be numeric in decimal format with a length of at
least 4 bytes.

SELINUSE - Number of global selectors in use

This read-only class characteristic returns the number of global selectors
currently in use by the system. Global selectors are used by the system
when addressing memory and represent a finite, but large, resource. The
value must be numeric in decimal format with a length of at least 4 bytes.

SELNUM - Number of global selectors created

This read-only class characteristic returns the number of global selectors
which have been created by the system. This value will generally be
slightly larger than the SELINUSE value. The value must be numeric in
decimal format with a length of at least 4 bytes.

SERNUM - Kernel serial number

This class characteristic returns the kernel serial number for the copy of
XOS being used. Each copy of XOS is serialized with a unique serial
number. This number is used to verify that multiple systems on a network

XOS Programmer's Guide
SYSTEM Class Characteristics

178

are not running from the same copy of XOS. Any attempt to modify this
serial number will result in a fatal system error. The value must be nu-
meric in decimal format with a length of at least 4 bytes.

SPEED - Processor speed factor

This read-only class characteristic returns a number which is roughly pro-
portional to processor speed. This value is not intended to be a compre-
hensive measure of processor speed, but is just a simple measure of the
speed of a simple timing loop. It is used internally by the system to cali-
brate very short time delays. A 16MHz 386DX machine should give a
value of about 10. Other speed machines should be roughly proportional,
with machines with a cache giving somewhat higher than expected values.
The value must be numeric in decimal format with a length of at least 4
bytes.

STATE - System state

This class characteristic sets or returns a value which represents the cur-
rent state of the system. The value is bit encoded as described in Table
12.2.

Table 12.2 System state values
Bit Name Meaning

0 SS$STRTCOMP System startup complete

Setting or getting this value requires the ADMIN privilege. The value
must be numeric in decimal format with a length of at least 4 bytes.

SYSNAME - System name

This read-only class characteristic returns the name of the system. This is
a text string which specifies the name and version of the operating system.
The value must be a string with a buffer length of at least 32 bytes.

TOTALMEM - Total memory in system

This read-only class characteristic returns the total amount of memory (in
KB) in the system. The value must be numeric in decimal format with a
length of at least 4 bytes.

USERMEM - User memory in system

This read-only class characteristic returns the total amount of user memory
(in KB) in the system. User memory is memory which is not allocated to

Class Characteristics - Chapter 12
SYSTEM Class Characteristics

179

the kernel. The value must be numeric in decimal format with a length of
at least 4 bytes.

V86BASE - Default base address for virtual-86 image

This class characteristic specifies the default base address for virtual-86
images (in KB). This is the lowest virtual-86 address at which memory is
allocated (excluding memory between 0 and 0xFFF, which is always avail-
able). This value serves two purposes. First it allows a lower limit to be
placed on the memory used by DOS programs. A few DOS programs do
not work correctly if loaded too low in memory. Second, it can be used to
prevent the use of virtual-86 memory between 0x1000 and 0xFFFF. Use of
memory in this area can cause conflicts with I/O devices which use I/O
registers between 0x1000 and 0xFFFF on some early steppings of the
80386 (due to a bug in the processor). The initial value of this characteris-
tic is 0. The value must be numeric in decimal format with a length of at
least 4 bytes.

V86SIZE - Default maximum size of virtual-86 image

This class characteristic specifies the default maximum size of a virtual-86
image (in KB). This effectively specifies the amount of base memory
available to a DOS program running under XOS. The initial value of this
characteristic is 640. The value must be numeric in decimal format with a
length of at least 4 bytes.

XFFINUSE - Number of extended fork frames in use

This read-only class characteristic returns the number of extended fork
frames currently in use by the system. The value must be numeric in deci-
mal format with a length of at least 4 bytes.

XFFLIMIT - Limit of number of extended fork frames

This class characteristic specifies a maximum limit for the number of ex-
tended fork frames used by the system. Setting this limit to a very large
value does not consume any system resources. This value provides a way
to limit the maximum amount of I/O activity in the system. Normally there
is no need to use this limit. It is initially set to 10,000, which is effectively
no limit. The value must be numeric in decimal format with a length of at
least 4 bytes.

XOS Programmer's Guide
SYSTEM Class Characteristics

180

XFFMAX - Maximum number of extended fork frames in use

This class characteristic records the maximum number of extended fork
frames that have been in use at any one time. The value must be numeric
in decimal format with a length of at least 4 bytes.

XFFNUM - Current number of extended fork frames

This read-only class characteristic returns the number of extended fork
frames currently in use by the system. The value must be numeric in deci-
mal format with a length of at least 4 bytes.

XMBAMAX - Maximum number of available exec buffers

This read-only class characteristic returns the maximum number of exec
buffers which have been available on each of the exec buffer free lists.
There are seven exec buffer free lists, corresponding to buffer sizes of 64,
128, 256, 512, 1024, 2048, and 4096 bytes. Note that each of the maxi-
mum values is maintained independently. Each number is returned in 4
bytes. The value must be numeric in decimal format with a length of at
least 28 bytes.

XMBAVAIL - Number of available exec buffers

This read-only class characteristic returns the number of exec buffers cur-
rently on each of the exec buffer free lists. There are seven exec buffer
free lists, corresponding to buffer sizes of 64, 128, 256, 512, 1024, 2048,
and 4096 bytes. Each number is returned in 4 bytes. The value must be nu-
meric in decimal format with a length of at least 28 bytes.

XMBINUSE - Number of exec buffers in use

This read-only class characteristic returns the number of exec buffers cur-
rently in use. Seven numbers are returned, corresponding to exec buffer
sizes of 64, 128, 256, 512, 1024, 2048, and 4096 bytes. Each number is re-
turned in 4 bytes. The value must be numeric with decimal format in a
length of at least 28 bytes.

XMBMAX - Maximum number of exec buffers in use

This read-only class characteristic returns the maximum number of exec
buffers which have been in use. Seven numbers are returned, correspond-
ing to buffer sizes of 64, 128, 256, 512, 1024, 2048, and 4096 bytes. Note
that each of the maximum values is maintained independently. Each num-
ber is returned in 4 bytes. The value must be numeric in decimal format
with a length of at least 28 bytes.

Class Characteristics - Chapter 12
SYSTEM Class Characteristics

181

XOSVER - XOS version number

This class characteristic is used to obtain the version number of the sys-
tem. This is the same version number returned for the SYSNAME but it is
returned here in numeric format. The value must be numeric in version
number format with a length of at least 4 bytes.

XOS Programmer's Guide
SYSTEM Class Characteristics

182

PROCESS Class Characteristics

The PROCESS device class is a dummy device class which exists only to provide a
mechanism for accessing and changing various values associated with individual
processes in the system. The PROCESS class characteristics are summarized in Ta-
ble 12.3.

Table 12.3 - PROCESS Class Characteristics
Name Fnc Format Size Description

CONTRM GS TEXT 8 Controlling terminal
NAME GS STR 12 Process name
NUM G DECV 4 Process number
PRIV GS STR 200 Current process privileges
PRIVAVL GS STR 200 Available process privileges
SEQ GV DECV 4 Sequence number

The PROCESS class is somewhat unusual in that it provides access to data about all
processes in the system. Certain of the class characteristics are used to select the pro-
cess to which any following characteristic applies. At the beginning of class charac-
teristic processing, the process issuing the QFNC_CLASS function is selected.

The following sections describe each of the PROCESS class characteristics in de-
tail.

CONTRM - Controlling terminal

This class characteristic returns the name of the currently selected pro-
cess’s controlling terminal or selects a process based on the terminal name
specified. When the value of this characteristic is set, the process which is
lowest in the process tree which has the specified terminal as its control-
ling terminal is selected for further class characteristic processing. If there
is more than one process at this level, which one is selected is not defined.
The terminal name must be a physical device name specified without a
trailing colon. The value must be text with a length of at least 8 bytes.

NAME - Process name

This class characteristic returns or sets the name of the currently selected
process. The value must be a string with a buffer length of at least 12
bytes.

Class Characteristics - Chapter 12
PROCESS Class Characteristics

183

NUM - Process number

This class characteristic returns the number of the currently selected pro-
cess or selects a process based on process number. When the value of this
characteristic is set, the process in the system with a matching process
number is selected for further class characteristic processing. The process
number is a 32-bit value. The high order 16-bits of the value contain the
process sequence number and the low order 16-bits contain the process in-
dex. If the process sequence number is specified as 0, any process with the
specified index is selected. If the process sequence number is specified as
a non-0 value, an ER_CHARV error is returned if it does not match the
current sequence number of the process whose index was specified. The
value must be numeric in decimal format with a length of at least 4 bytes.

PRIV - Current process privileges

This class characteristic returns or sets the current process privileges for
the currently selected process. Note that this characteristic does not change
process selection. Refer to Chapter 4 for a description of the privilege
string. The value must be a string. If getting the current privileges, the
buffer length should be at least 200 bytes.

PRIVAVL - Available process privileges

This class characteristic returns or sets the current available process privi-
leges for the currently selected process. Note that this characteristic does
not change process selection. Refer to Chapter 4 for a description of the
privilege string. Note that privileges cannot be added to the current value.
The value must be a string. If getting the current available privileges, the
buffer length should be at least 200 bytes.

SEQ - Sequence number

This class characteristic returns the sequence number of the currently se-
lected process or verifies that the sequence number specified matches that
of the currently selected process. If it does not match, an ER_CHARV er-
ror is returned. The value must be numeric with a length of at least 2
bytes.

XOS Programmer's Guide
PROCESS Class Characteristics

184

DISK Class Characteristics

The DISK device class includes all disk-like devices. These are any devices which
support a local file system. Some systems (such as DOS) refer to these as block de-
vices. The DISK class characteristics are summarized in Table 12.4.

Table 12.4 - DISK Class Characteristics
Name Fnc Format Size Description

AHEAD GS DECV 4 Maximum read-ahead blocks
LIMIT GS DEVC 4 Maximum number of disk devices allowed
MAXIMUM GS DECV 4 Maximum number of in use disk devices
NUMBER GS DECV 4 Number of in use disk devices
NUMDBUF GS DECV 4 Number of disk data buffers
NUMSBUF GS DECV 4 Number of disk system buffers

The following sections describe each of the DISK class characteristics in detail.

AHEAD - Maximum read-ahead blocks

This class characteristic returns or sets the maximum number of blocks
which will be read ahead when accessing a disk. This value is a maximum
for the system. Individual disks may set a lower read ahead limit. The
value must be numeric in decimal format with a length of at least 4 bytes.

LIMIT - Maximum number of disk devices allowed

This class characteristic specifies the maximum number of disk devices
which can be in use at any one time. This is effectively the maximum
number of files which can be simultaneously open. Setting this character-
istic to a very large value does not consume any system resources. It is ini-
tially set to 10,000, which is effectively no limit. The value must be
numeric in decimal format with a length of at least 4 bytes.

MAXIMUM - Maximum number of in use disk devices

This class characteristic records the maximum number of disk devices in
use at any one time. This is effectively the maximum number of simulta-
neously open files. The value must be numeric in decimal format with a
length of at least 4 bytes.

Class Characteristics - Chapter 12
DISK Class Characteristics

185

NUMBER - Number of in use disk devices

This read-only class characteristic reports the number of disk devices cur-
rently in use. This is effectively the number of currently open files. The
value must be numeric in decimal format with a length of at least 4 bytes.

NUMDBUF - Number of disk data buffers

This class characteristic returns the number of disk data buffers in the sys-
tem or allocates additional disk data buffers. Disk data buffers are used to
cache user data read from the disk and for read ahead of user data. If the
value is specified, it is first rounded up to a multiple of 7. If this value is
larger than the current number of disk data buffers in the system, addi-
tional disk data buffers are allocated to increase the total number to the
value specified. If this value is equal to or smaller than the current number
of disk data buffers in the system, nothing is done. Allocating additional
buffers requires the ADMIN privilege. The value must be numeric in deci-
mal format with a length of at least 4 bytes.

NUMSBUF - Number of disk system buffers

This class characteristic returns the number of disk system buffers in the
system or allocates additional disk data buffers. Disk system buffers are
used to cache system accesses to the disk (such as directory and FAT
reads) and to store information about open files. If the value is specified, it
is first rounded up to a multiple of 7. If this value is larger than the current
number of disk data buffers in the system, additional disk system buffers
are allocated to increase the total number to the value specified. If this
value is equal to or smaller than the current number of disk system buffers
in the system, nothing is done. Allocating additional buffers requires the
ADMIN privilege. The value must be numeric in decimal format with a
length of at least 4 bytes.

XOS Programmer's Guide
DISK Class Characteristics

186

SPL Class Characteristics

The SPL device class includes only the SPL spooled disk devices. There are no class
characteristics associated with the SPL device class.

Class Characteristics - Chapter 12
SPL Class Characteristics

187

TAPE Class Characteristics

The TAPE device class is the generic class which supports various types of magnetic
tape storage devices. The class characteristics for this class are those dealing with
the number of devices allowed and the number in use. The NET class characteristics
are summarized in Table 12.5.

Table 12.5 - TAPE Class Characteristics
Name Fnc Format Size Description

LIMIT GS DECV 4 Maximum number of TAPE devices al-
lowed

NUMBER G DECV 4 Number of in use TAPE devices
MAXIMUM GS DECV 4 Maximum number of in use TAPE devices

The following sections describe each of the TAPE class characteristics in detail.

LIMIT - Maximum number of network devices allowed

This class characteristic specifies the maximum number of TAPE devices
which can be in use at any one time. The value must be numeric in deci-
mal format with a length of at least 4 bytes.

NUMBER - Number of in use TAPE devices

This read-only class characteristic returns the number of network devices
currently in use in the system. This is the number of open NETWORK de-
vices. The value must be numeric in decimal format with a length of at
least 4 bytes.

MAXIMUM - Maximum number of in use TAPE devices

This class characteristic records the maximum number of TAPE devices in use at
any one time. This is the maximum number of simultaneously open TAPE devices.
The value must be numeric in decimal format with a length of at least 4 bytes.

XOS Programmer's Guide
TAPE Class Characteristics

188

TRM Class Characteristics

The TRM device class includes all terminal-like devices. These include the con-
sole/keyboard device and all serial port devices (except for the serial network
driver). The TRM class characteristics are summarized in Table 12.6.

Table 12.6 - TRM Class Characteristics
Name Fnc Format Size Description

LIMIT G DECV 4 Maximum number of terminal devices al-
lowed

MAXIMUM GS DECV 4 Maximum number of in use terminal de-
vices

NUMBER G DECV 4 Number of in use terminal devices

The following sections describe each of the TRM class characteristics in detail.

LIMIT - Maximum number of terminal devices allowed

This class characteristic specifies the maximum number of terminal de-
vices which can be in use at any one time. The value must be numeric in
decimal format with a length of at least 4 bytes.

MAXIMUM - Maximum number of in use terminal devices

This class characteristic records the maximum number of terminal devices
in use at any one time. This is the maximum number of simultaneously
open terminal devices. The value must be numeric in decimal format with
a length of at least 4 bytes.

NUMBER - Number of in use terminal devices

This read-only class characteristic returns the number of terminal devices
currently in use in the system. This is the number of open terminal de-
vices. The value must be numeric in decimal format with a length of at
least 4 bytes.

Class Characteristics - Chapter 12
TRM Class Characteristics

189

PCN Class Characteristics

The PCN device class includes all serverside psuedoconsole devices. The PCN class
characteristics are summarized in Table 12.7.

Table 12.7 - PCN Class Characteristics
Name Fnc Format Size Description

LIMIT G DECV 4 Maximum number of pseudo-console de-
vices allowed

MAXIMUM GS DECV 4 Maximum number of in use pseudo-console
devices

NUMBER G DECV 4 Number of in use pseudo-console devices

The following sections describe each of the PCN class characteristics in detail.

LIMIT - Maximum number of pseudo-console devices allowed

This class characteristic specifies the maximum number of pseudo-console
devices which can be in use at any one time. The value must be numeric in
decimal format with a length of at least 4 bytes.

MAXIMUM - Maximum number of in use pseudo-console devices

This class characteristic records the maximum number of pseudo-console
devices in use at any one time. This is the maximum number of simulta-
neously open pseudo-console devices. The value must be numeric in deci-
mal format with a length of at least 4 bytes.

NUMBER - Number of in use pseudo-console devices

This read-only class characteristic returns the number of pseudo-console
devices currently in use in the system. This is the number of open
pseudo-console devices. The value must be numeric in decimal format
with a length of at least 4 bytes.

XOS Programmer's Guide
PCN Class Characteristics

190

IPM Class Characteristics

The IPM device class includes only the IPM (InterProcess Message) device. This
device is used for sending messages (datagrams) between processes on the same
system. Since this function is implemented as a device, it allows the use of the stan-
dard device oriented system calls for interprocess communication, eliminating the
need for a special set of system calls for this purpose. The IPM class characteristics
are summarized in Table 12.8.

Table 12.8 - IPM Class Characteristics
Name Fnc Format Size Description

LIMIT GS DECV 4 Maximum number of interprocess message
devices allowed

NUMBER G DECV 4 Number of in use interprocess message de-
vices

MAXIMUM G DECV 4 Maximum number of in use interprocess
message devices

The following sections describe each of the IPM class characteristics in detail.

LIMIT - Maximum number of interprocess message devices allowed

This class characteristic specifies the maximum number of interprocess
message devices which can be in use at any one time. The value must be
numeric in decimal format with a length of at least 4 bytes.

NUMBER - Number of in use interprocess message devices

This read-only class characteristic returns the number of interprocess mes-
sage devices currently in use in the system. This is the number of open
interprocess message devices. The value must be numeric in decimal for-
mat with a length of at least 4 bytes.

MAXIMUM - Maximum number of in use interprocess message devices

This class characteristic records the maximum number of interprocess
message devices in use at any one time. This is the maximum number of
simultaneously open interprocess message devices. The value must be nu-
meric in decimal format with a length of at least 4 bytes.

Class Characteristics - Chapter 12
IPM Class Characteristics

191

NULL Class Characteristics

The NULL device class includes only the NULL device. This is a dummy device
which discards all output written to it and always indicates end of file on input.
There are no class characteristics associated with the NULL device class.

XOS Programmer's Guide
NULL Class Characteristics

192

PPR Class Characteristics

The PPR device class includes only the PPRn device. This is the generic parallel
printer device which supports printers connected to a parallel port. There are no
class characteristics associated with the PPR device class.

Class Characteristics - Chapter 12
PPR Class Characteristics

193

NET Class Characteristics

The NET device class is the generic network device class. NET devices can be used
to directly access the network interfaces, but most actual use is through various
other associated devices. The class characteristics for this class are those dealing
with the number of devices allowed and the number in use. The NET class charac-
teristics are summarized in Table 12.9.

Table 12.9 - NET Class Characteristics
Name Fnc Format Size Description

LIMIT GS DECV 4 Maximum number of network devices al-
lowed

NUMBER G DECV 4 Number of in use network devices
MAXIMUM GS DECV 4 Maximum number of in use network de-

vices

The following sections describe each of the NET class characteristics in detail.

LIMIT - Maximum number of network devices allowed

This class characteristic specifies the maximum number of network de-
vices which can be in use at any one time. The value must be numeric in
decimal format with a length of at least 4 bytes.

NUMBER - Number of in use network devices

This read-only class characteristic returns the number of network devices
currently in use in the system. This is the number of open network de-
vices. The value must be numeric in decimal format with a length of at
least 4 bytes.

MAXIMUM - Maximum number of in use network devices

This class characteristic records the maximum number of network devices
in use at any one time. This is the maximum number of simultaneously
open network devices. The value must be numeric in decimal format with
a length of at least 4 bytes.

XOS Programmer's Guide
NET Class Characteristics

194

SNAP Class Characteristics

The SNAP device class provides access to the link control level for the Internet pro-
tocol stack using the SNAP or Bluebook link level protocols. The class characteris-
tics for this class are those dealing with the number of devices allowed and the
number in use. The SNAP class characteristics are summarized in Table 12.10.

Table 12.10 - NET Class Characteristics
Name Fnc Format Size Description

LIMIT GS DECV 4 Maximum number of SNAP devices al-
lowed

NUMBER G DECV 4 Number of in use SNAP devices
MAXIMUM GS DECV 4 Maximum number of in use SNAP devices

The following sections describe each of the SNAP class characteristics in detail.

LIMIT - Maximum number of SNAP devices allowed

This class characteristic specifies the maximum number of SNAP devices
which can be in use at any one time. The value must be numeric in deci-
mal format with a length of at least 4 bytes.

NUMBER - Number of in use SNAP devices

This read-only class characteristic returns the number of SNAP devices
currently in use in the system. This is the number of open SNAP devices.
The value must be numeric in decimal format with a length of at least 4
bytes.

MAXIMUM - Maximum number of in use SNAP devices

This class characteristic records the maximum number of SNAP devices in
use at any one time. This is the maximum number of simultaneously open
SNAP devices. The value must be numeric in decimal format with a length
of at least 4 bytes.

Class Characteristics - Chapter 12
SNAP Class Characteristics

195

ARP Class Characteristics

The ARP device class provides access to the ARP protocol level for the Internet pro-
tocol stack. The class characteristics for this class are those dealing with the number
of devices allowed and the number in use. The ARP class characteristics are summa-
rized in Table 12.11.

Table 12.11 - ARP Class Characteristics
Name Fnc Format Size Description

LIMIT GS DECV 4 Maximum number of ARP devices al-
lowed

NUMBER G DECV 4 Number of in use ARP devices
MAXIMUM GS DECV 4 Maximum number of in use ARP devices

The following sections describe each of the ARP class characteristics in detail.

LIMIT - Maximum number of ARP devices allowed

This class characteristic specifies the maximum number of ARP devices
which can be in use at any one time. The value must be numeric in deci-
mal format with a length of at least 4 bytes.

NUMBER - Number of in use ARP devices

This read-only class characteistic returns the number of ARP devices cur-
rently in use in the system. This is the number of open ARP devices. The
value must be numeric in decimal format with a length of at least 4 bytes.

MAXIMUM - Maximum number of in use ARP devices

This class characteristic records the maximum number of ARP devices in
use at any one time. This is the maximum number of simultaneously open
ARP devices. The value must be numeric in decimal format with a length
of at least 4 bytes.

XOS Programmer's Guide
ARP Class Characteristics

196

IPS Class Characteristics

The IPS device class includes only the IPSn devices. This is a network device which
provides access to the IP protocol level. There are no class characteristics associated
with the IPS device class.

The IPS device class provides access to the IP level of the Internet protocol stack.
The class characteristics for this class are those dealing with the number of devices
allowed and the number in use. The IPS class characteristics are summarized in Ta-
ble 12.12.

Table 12.12 - IPS Class Characteristics
Name Fnc Format Size Description

LIMIT GS DECV 4 Maximum number of IPS devices allowed
NUMBER G DECV 4 Number of in use IPS devices
MAXIMUM GS DECV 4 Maximum number of in use IPS devices

The following sections describe each of the IPS class characteristics in detail.

LIMIT - Maximum number of IPS devices allowed

This class characteristic specifies the maximum number of IPS devices
which can be in use at any one time. The value must be numeric in deci-
mal format with a length of at least 4 bytes.

NUMBER - Number of in use IPS devices

This read-only class characteristic returns the number of IPS devices cur-
rently in use in the system. This is the number of open IPS devices. The
value must be numeric in decimal format with a length of at least 4 bytes.

MAXIMUM - Maximum number of in use IPS devices

This class characteristic records the maximum number of IPS devices in
use at any one time. This is the maximum number of simultaneously open
IPS devices. The value must be numeric in decimal format with a length of
at least 4 bytes.

Class Characteristics - Chapter 12
IPS Class Characteristics

197

UDP Class Characteristics

The UDP device class provides access to the UDP protocol level of the Internet pro-
tocol stack. The class characteristics for this class are those dealing with the number
of devices allowed and the number in use. The UDP class characteristics are summa-
rized in Table 12.13.

Table 12.13 - UDP Class Characteristics
Name Fnc Format Size Description

LIMIT GS DECV 4 Maximum number of UDP devices al-
lowed

NUMBER G DECV 4 Number of in use UDP devices
MAXIMUM GS DECV 4 Maximum number of in use UDP devices

The following sections describe each of the UDP class characteristics in detail.

LIMIT - Maximum number of UDP devices allowed

This class characteristic specifies the maximum number of UDP devices
which can be in use at any one time. The value must be numeric in deci-
mal format with a length of at least 4 bytes.

NUMBER - Number of in use UDP devices

This read-only class characteristic returns the number of UDP devices cur-
rently in use in the system. This is the number of open UDP devices. The
value must be numeric in decimal format with a length of at least 4 bytes.

MAXIMUM - Maximum number of in use UDP devices

This class characteristic records the maximum number of UDP devices in
use at any one time. This is the maximum number of simultaneously open
UDP devices. The value must be numeric in decimal format with a length
of at least 4 bytes.

XOS Programmer's Guide
UDP Class Characteristics

198

TCP Class Characteristics

The TCP device class provides access to the TCP protocol level of the Internet pro-
tocol stack. The class characteristics for this class are those dealing with the number
of devices allowed and the number in use. The TCP class characteristics are summa-
rized in Table 12.14.

Table 12.14 - TCP Class Characteristics
Name Fnc Format Size Description

LIMIT GS DECV 4 Maximum number of TCP devices allowed
NUMBER G DECV 4 Number of in use TCP devices
MAXIMUM GS DECV 4 Maximum number of in use TCP devices

The following sections describe each of the TCP class characteristics in detail.

LIMIT - Maximum number of TCP devices allowed

This class characteristic specifies the maximum number of TCP devices
which can be in use at any one time. The value must be numeric in deci-
mal format with a length of at least 4 bytes.

NUMBER - Number of in use TCP devices

This read-only class characteristic returns the number of TCP devices cur-
rently in use in the system. This is the number of open TCP devices. The
value must be numeric in decimal format with a length of at least 4 bytes.

MAXIMUM - Maximum number of in use TCP devices

This class characteristic records the maximum number of TCP devices in
use at any one time. This is the maximum number of simultaneously open
TCP devices. The value must be numeric in decimal format with a length
of at least 4 bytes.

Class Characteristics - Chapter 12
TCP Class Characteristics

199

TLN Class Characteristics

The TLN device class implements an embedded Telnet server.This device cannot do
IO directly, but it can be used to read or set Telnet server parameters and characteris-
tics. There are no class characteristics associated with the TLN device class.

XOS Programmer's Guide
TLN Class Characteristics

200

RCP Class Characteristics

The RCP device class provides access to the RCP protocol level of the Internet pro-
tocol stack. The class characteristics for this class are those dealing with the number
of devices allowed and the number in use. The RCP class characteristics are summa-
rized in Table 12.15.

Table 12.15 - RCP Class Characteristics
Name Fnc Format Size Description

LIMIT GS DECV 4 Maximum number of RCP devices allowed
NUMBER G DECV 4 Number of in use RCP devices
MAXIMUM GS DECV 4 Maximum number of in use RCP devices

The following sections describe each of the RCP class characteristics in detail.

LIMIT - Maximum number of RCP devices allowed

This class characteristic specifies the maximum number of RCP devices
which can be in use at any one time. The value must be numeric in deci-
mal format with a length of at least 4 bytes.

NUMBER - Number of in use RCP devices

This read-only class characteristic returns the number of RCP devices cur-
rently in use in the system. This is the number of open RCP devices. The
value must be numeric in decimal format with a length of at least 4 bytes.

MAXIMUM - Maximum number of in use RCP devices

This class characteristic records the maximum number of RCP devices in use at any
one time. This is the maximum number of simultaneously open RCP devices. The
value must be numeric in decimal format with a length of at least 4 bytes.

Class Characteristics - Chapter 12
RCP Class Characteristics

201

XFP Class Characteristics

The XFP device class implements a client which uses the XFP protocol to provide
remote file access. The class characteristics for this class are those dealing with the
number of devices allowed and the number in use. The XFP class characteristics are
summarized in Table 12.16.

Table 12.16 - TCP Class Characteristics
Name Fnc Format Size Description

LIMIT GS DECV 4 Maximum number of XFP devices allowed
NUMBER G DECV 4 Number of in use XFP devices
MAXIMUM GS DECV 4 Maximum number of in use XFP devices

The following sections describe each of the XFP class characteristics in detail.

LIMIT - Maximum number of XFP devices allowed

This class characteristic specifies the maximum number of XFP devices
which can be in use at any one time. The value must be numeric in deci-
mal format with a length of at least 4 bytes.

NUMBER - Number of in use XFP devices

This read-only class characteristic returns the number of XFP devices cur-
rently in use in the system. This is the number of open XFP devices. The
value must be numeric in decimal format with a length of at least 4 bytes.

MAXIMUM - Maximum number of in use XFP devices

This class characteristic records the maximum number of XFP devices in use at any
one time. This is the maximum number of simultaneously open XFP devices. The
value must be numeric in decimal format with a length of at least 4 bytes.

XOS Programmer's Guide
XFP Class Characteristics

202

Chapter 13

Device Characteristics

This chapter describes the device characteristics for all standard devices in the sys-
tem, included those implemented with loadable drivers. A device characteristic is a
named item which specifies a value associated with a specific device. It is similar to
a class characteristic except that a class characteristic represents a value associated
with a device class as a whole, rather than with an individual device.

Device characteristics are mainly used to access permanent values, that is, items
which retain their values when devices are opened and closed by programs. There
are a few exceptions to this, where values are only effective until the next time the
device is idle, and these are noted in the descriptions which follow.

Device characteristics provide a standardized interface which applies to all devices.
It is a very flexible interface which is easily adaptable to virtually any new device
type. Indeed, this degree of flexibility is such that it is difficult to summarize how
device characteristics are used. This is best understood by reading the following de-
scriptions of how individual XOS devices use device characteristics.

Device characteristics are accessed using the QFNC_DEVCHAR function of the
svcIoQueue system call, which is described in Chapter 16. A DEVCHAR command
is provided (which is described in the XOS User’s Guide), which provides access to
the device characteristics values from the command line.

This chapter lists the device characteristics by device class, and where necessary, by
device type within a class. Technically, there is no relationship between characteris-
tics for different devices which have the same name, but in practice all characteris-
tics with the same names represent roughly equivalent values for their respective
devices. There is one device characteristic that is defined for all devices and a small
number that are defined for nearly all devices. Programmers implementing new de-
vices are strongly encouraged to use the established names, but only in the same way
they are used for the standard devices.

Device Characteristics - Chapter 13

203

It should be noted in passing that the characteristics passed to the CLSF_ADDUNIT
sub-function of the QFNC_CLASS svcIoQueue function bear a strong resemblance
to device characteristics. While they have a different name-space from the device
characteristics for a device, they often perform similar functions, initializing values
when a device is first created. Generally, the add unit characteristics specify values
that must be specified when the device is created and cannot be changed later. The
standard XOS devices define device characteristics with the same names as these
add unit characteristics (such as IOREG) which can be used to obtain the values
used when the device was created. Programmers implementing new devices are
strongly encouraged to continue this practice.

Device characteristics are specified using a device characteristic list. This is a data
structure consisting of a sequence of device characteristic items followed by a byte
containing 0. Each device characteristic item consists of a 10 byte header followed
by a 0 to 32 byte value.

The first header byte specifies the function to perform and the value format. It is de-
scribed in detail in figure 13.1.

XOS Programmer's Guide

204

Figure 13.1 First Characteristic Header Byte
Bit Name Set by Meaning
7 SET user 1 if should set value of characteristic
6 GET user 1 if should get value of characteristic
5 ERROR system 1 if error associated with this characteristic
4 Not used

3-0 FORMAT user Value format as follows:
Value Name Meaning

0 Not used
1 DECV Decimal value
2 HEXV Hex value
3 OCTV Octal value
4 BINV Binary value
5 DECB Decimal bytes
6 HEXB Hex bytes
7 OCTB Octal bytes
8 VERN Version number
9 TIME Time value
10 DATE Date value
11 DT Date/time value
12 DATAB Data bytes
13 DATAS Data string
14 TEXT Test bytes
15 STR String value

The value format field provides a fairly detailed specification of the type of value as-
sociated with the parameter. The current version of XOS does not differentiate be-
tween types 1 through 11, but simply treats them as general numeric values. Any of
these values can be specified whenever a numeric value is called for. It is suggested
that some effort be made to match the type with the specific type of value actually
used, however, since future versions of XOS may use this information. Value types
of 1 through 12 and 14 indicate a value which is stored in the value field which im-
mediately follows the header. Value types of 13 and 15 indicate a value which is
stored in a buffer which is specified by a buffer descriptor which immediately fol-
lows the header.

The C language symbols for the function bits are generated by prefixing PAR_ to the
names given in the table above. The assembler names are generated by prefixing
PAR$. The C and assembler names for the value formats are generated by prefixing
REP_ to the name given above.

Device Characteristics - Chapter 13

205

The second header byte contains the length of the value, in bytes. If a shorter value is
specified than is needed when setting a characteristic value, the value is zero ex-
tended to the necessary length. If a shorter value field than is expected is specified
when getting a value and the actual value to be returned will fit in the field specified
without truncation, the value is stored. If the value would be truncated, an
ER_CHARS error is returned for the I/O operation the PAR$ERROR bit is set in the
characteristic. When the value type is FMT_STR, the second byte is not used and
should contain 0. In this case, the value field consists of an 8 byte far pointer (high 2
bytes of the selector part are not used) which points to a buffer containing the string
value (if PAR$SET set) or to receive the string value (if PAR$GET set), followed by
two 2 byte values. The first of these values specifies the length of the buffer and the
second specifies the length of the string in the buffer. The buffer length value must
be set by the caller before issuing the system call. The string length value must be set
by the caller if PAR$SET is specified. It is set by the system to indicate the actual
length of the string returned if PAR$GET is specified.

The third through tenth bytes of the header contain the ASCII name of the character-
istic. It is not case sensitive. If the name is shorter than 8 characters, the field is filled
with NULL characters.

Device characteristics are accessed using the QFNC_DEVCHAR function of the
svcIoQueue system call, which is described in chapter 15. A DEVCHAR command
is provided (which is described in the XOS User’s Guide), which provides access to
the device characteristics values from the command line.

This chapter contains a number of tables which summarize the device characteris-
tics for the various devices. These tables all have the same format. The first column
specifies the name of the characteristic (1 to 8 characters, not case sensitive but
listed by convention as upper case). The second column specifies the format of the
value. This corresponds to the PAR$FORMAT value listed in Table 13-1, above,
without the FMT_ prefix. The third column specifies the minimum value length
which can contain all possible values of the characteristic. The fourth column may
contain the letters S or V to indicate that the value of the characteristic may be set or
verified (PAR$SET set in the first byte of the characteristic). S indicates that the
value may be set. V indicates that a set operation is allowed but that it will verify,
rather than change the value. Get operations are always valid.

It should be noted that the interpretation of the format is exactly the same as for class
characteristics (see Chapter 12) and is the same as for device parameters (see Chap-
ter 11), except that the type of numeric format is significant here. A sub-function of
the QFNC_DEVCHAR function allows a program to obtain the format of a charac-

XOS Programmer's Guide

206

teristic, which can then be used to format the value for output. This feature is used by
the DEVCHAR command to display each value in the proper format.

Table 13.2 summarizes the device characteristics which are common to most XOS
devices. Not all devices use all of these characteristics, but those that do always use
them as described here.

Table 13.2 - Common device characteristics
Name Fnc Format Size Description

CLASS V TEXT 8 Device class
INDEX G DECV 1 Index of unit on controller
IOREG G HEXV 2 Base I/O register number
TYPE G TEXT 4 Device type

The following describes these common device characteristics in detail.

CLASS - Device class

This device characteristic is used by every XOS device. It returns the
name of the device class to which the device belongs. When a value is
specified for this characteristic, that value is compared to the name of the
device class for the device. If they are the same, no further action is taken.
If they are different, an ER_CHARV error is returned. This allows a pro-
gram to verify that a given device is really a member of the class expected.
This is useful since many devices implement device dependent functions
which only behave as expected for a specific class device. The value must
be text with a length of at least 8 bytes.

INDEX - Index of unit on controller

This device characteristic is used by devices which support multiple de-
vice units connected to a single controller. This characteristic returns the
index of a device on its controller. Since this value generally cannot be
changed after the device is created, attempting to set the value of this char-
acteristic results in an ER_CHARF error. The value must be numeric im
decimal format with a length of at least one byte.

IOREG - Base I/O register number

This device characteristic is used by all devices which are associated with
a particular set of hardware I/O registers. The value of this characteristic is
the number of the base I/O register for the device. Devices which require
specification of additional I/O register numbers define additional charac-
teristics for this purpose. Since this value generally cannot be changed af-

Device Characteristics - Chapter 13

207

ter the device is created, attempting to set the value of this characteristic
results in an ER_CHARF error. The value must be numeric in hex format
with a length of at least two bytes.

TYPE - Device type

This device characteristic is used by devices which use different drivers to
support different types of hardware. Its value specifies the specific type of
driver being used for the device. For example, XOS supports both the
standard AT type floppy controller and the Compati-Card floppy control-
ler. The value of this characteristic indicates which is being used for a spe-
cific floppy drive. Since this value generally cannot be changed after the
device is created, attempting to set the value of this characteristic results in
an ER_CHARF error. The value must be text with a length of at least four
bytes.

The remainder of this chapter describes the device characteristics used by the stan-
dard XOS devices.

XOS Programmer's Guide

208

DISK Device Characteristics

Device characteristics for DISK class devices generally refer to the underlying
physical disk or disk partition, even if the device is really a file on a file structured
disk. There are a number of device characteristics which are used by all DISK class
devices and there are a smaller number which are specific to individual types of disk
(hard disks or floppy disks). The common characteristics for disks are summarized
in table 13.3. NOTE: Not all disks have all of these characteristics but more than one
type of disk can have these.

Table 13.3 - Device characteristics for DISK class devices
Name Fnc Format Size Description

AVAIL G DECV 4 Number of free clusters
BLOCKIN GS DECV 4 Number of blocks input

BLOCKOUT GS DECV 4 Number of blocks output
BYTEIN GS DECV 4 Number of bytes input
BYTEOUT GS DECV 4 Number of bytes output
CBLKSZ G DECV 2 Current block size in bytes
CBLOCKS G DECV 4 Current total number of blocks on disk
CCYLNS GS DECV 4 Current number of cylinders
CHEADS GS DECV 1 Current number of heads
CLASS G TEXT 8 Device class
CLSSZ G DECV 4 Cluster size
CLUSTERS G DECV 4 Total number of clusters
CSECTS G DECV 4 Current number of sectors per track
DOSNAMEn GS TEXT 16 DOS name (drive letter) for unit n
DTHLIMIT G DECV 4 Data transfer hardware limit
FATMODE G HEXV 1 DOS FAT mode byte
FSTYPE G TEXT 8 File structure type
HDATAERR GS DECV 4 Number of hard data errors
HDEVERR GS DECV 4 Number of hard device errors
HIDFERR GS DECV 4 Number of hard ID field errors
HOVRNERR GS DECV 4 Number of hard DMA overrun errors
HRNFERR GS DECV 4 Number of hard record not found errors
HSEEKERR GS DECV 4 Number of hard seek errors
HUNGERR GS DECV 4 Number of device time-outs
IBLKSZ GS DECV 2 Initial block size in bytes
IBLOCKS G DECV 4 Initial total number of blocks on disk
ICYLNS GS DECV 4 Initial number of cylinders

Device Characteristics - Chapter 13
DISK Device Characteristics

209

Table 13.3 - Device characteristics for DISK class devices
Name Fnc Format Size Description

IHEADS GS DECV 1 Initial number of heads
ISECTS GS DECV 4 Initial number of sectors per track
MODEL G STR 42 Device model description
MSENSOR G TEXT 4 Drive has media sensor
PARTN G HEXV 1 Partition table index
PARTOFF G DECV 4 Partition offset
PROTECT GS TEXT 4 File access protection
RAMAX GS DECV 4 Maximum read-ahead blocks
REMOVE G TEXT 4 Media is removable
REVISION G STR 10 Device revision number
ROOTBLK G DECV 4 First block for root directory
ROOTPROT G STR 100 Root directory protection
ROOTSIZE G DECV 4 Size of root directory
SERIALNO G STR 22 Device serial number or other data
SHRDELAY GS DECV 4 File sharing delay factor
SHRFAIL GS DECV 4 Number of file sharing failures
SHRRETRY GS DECV 4 Number of file sharing retries
TDATAERR GS DECV 4 Total number of data errors
TDEVERR GS DECV 4 Total number of device errors
TIDFERR GS DECV 4 Total number of ID field errors
TOVRNERR GS DECV 4 Total number of DMA overrun errors
TRNFERR GS DECV 4 Total number of record not found errors
TSEEKERR GS DECV 4 Total number of seek errors
UNITTYPE G TEXT 4 Unit type
VOLCDT G DT 8 Volume creation date and time
VOLEDT G DT 8 Volume effective date and time
VOLLABEL G STR 34 Volume label
VOLMDT G DT 8 Volume modification date and time
VOLNAME GS TEXT 16 Volume name
VOLXDT G DT 8 Volume expriation date and time
WTMAX GS DECV 4 Write transfer limit

The common disk device characteristics are described in detail below.

AVAIL - Number of clusters available

This read-only device characteristic returns the number of available clus-
ters for a file structured disk. If the disk is not file structured, the value re-
turned is always 0.

XOS Programmer's Guide
DISK Device Characteristics

210

BLOCKIN - Number of blocks input

This read-write device characteristic returns the number of blocks written
to the disk.

BLOCKOUT - Number of blocks output

This read-write device characteristic returns the number of blocks read
from the disk.

BYTEIN - Number of bytes input

This read-write device characteristic returns the number of bytes written to
the disk.

BYTEOUT - Number of bytes output

This read-write device characteristic returns the number of bytes read from
the disk.

CBLKSZ - Current block size

This device characteristic specifies the current block or sector size, in
bytes. File structured disks require a block size of 512 bytes, so this value
cannot be changed for file structured disks or for disk accessed using the
XOS disk cache. It can be changed, however, for non-file structured disks
open in raw mode. This allows for access of non-standard physical disk
formats. This is particularly useful when reading certain non-DOS floppy
disks. There are some limitations imposed by the disk controllers on block
size. Controllers for hard disk usually do not allow the block size to be
changed at all. The standard floppy controllers require an even power of 2
equaling between 128 and 4096. A value specified for this characteristic is
in effect until a mount operation is done, when the value reverts back to
the value of the DBLKSZ characteristic.

CBLOCKS - Current toltal number of blocks on disk

This read-only device characteristic returns the number of available blocks
for a file structured disk. If the disk is not file structured, the value re-
turned is the total number of blocks for the physical drive.

CCYLNS - Current number of cylinders

This device characteristic specifies the current number of cylinders on the
disk. This value is set from the parameters of the file structure for file
structured disks and cannot be changed for such disks. It can be changed
for non-file structured disks. This should be done with care, however,

Device Characteristics - Chapter 13
DISK Device Characteristics

211

since some disks can be physically damaged if repeatedly positioned be-
yond the last cylinder on the disk. A value specified for this characteristic
is in effect until a mount operation is done, when the value reverts back to
the value of the DCYLNS characteristic.

CHEADS - Current number of heads

This device characteristic specifies the current number of heads on the
disk. This value is set from the parameters of the file structure for file
structured disks and cannot be changed for such disks. It can be changed
for non-file structured disks. This is particularly useful when attempting to
read a single sided floppy disk in a normal double sided floppy drive. A
value specified for this characteristic is in effect until a mount operation is
done, when the value reverts back to the value of the DHEADS character-
istic.

CLASS - Device class

This device characteristic returns the name of the device class to which the
device belongs. When a value is specified for this characteristic, that value
is compared to the name of the device class for the device. If they are the
same, no further action is taken.

CLSSZ - Cluster size

This read-only device characteristic reports the cluster size (in blocks) for
a file structured disk. A cluster is the smallest amount of space allocated in
the file system. For DOS and XOS file systems, it is always a power of 2,
usually 1 to 8 blocks. A value of 0 is reported for non-file structured disks.

CLUSTERS - Total number of clusters

This read-only device characteristic reports the total number of clusters on
a file structured disk. A value of 0 is reported for non-file structured disks.

CSECTS - Current number of sectors

This device characteristic specifies the current number of sectors per track
on the disk. This value is set from the parameters of the file structure for
file structured disks and cannot be changed for such disks. It can be
changed for non-file structured disks. A value specified for this character-
istic is in effect until a mount operation is done, when the value reverts
back to the value of the DSECTS characteristic.

XOS Programmer's Guide
DISK Device Characteristics

212

DOSNAME - DOS disk name

This device characteristic specifies the DOS name for the disk. This name
provides an alternate name for the disk. Normally this is used to specify
the equivalent DOS disk name (a single letter) for DOS compatibility.
When a program requests that the DOS name of a device be returned, this
name is returned.

DOSNAMEn - DOS name (drive letter) for unit/partition n

This device characteristic specifies the DOS name for the disk unit or par-
tition where n is the partion number. This name provides an alternate name
for the disk. Normally this is used to specify the equivalent DOS disk
name (a single letter) for DOS compatibility. When a program requests
that the DOS name of a device be returned, this name is returned. This is
used for disks that have removeable media, where there may be different
numbers of partions on each removeable disk. There is no error reported
for setting more partition names than the disk actualy has. Only if the
drive letter is used will an error be reported.

DTHLIMIT - Data transfer hardware limit

This device characteristic specifies the harware limit in blocks that this
disk device can transfer in one operation.

FATMODE - FAT mode byte (DOS file system)

This read-only device characteristic reports the value of the FAT mode
byte for DOS file systems. A value of 0 is returned for disks which do not
contain a DOS file system.

FSTYPE - File structure type

This read-only device characteristic reports the type of file system
mounted on the device.

Possible values are:

Device Characteristics - Chapter 13
DISK Device Characteristics

213

Value Meaning
XOS XOS native file system
DOS12 DOS file system with 12 bit FAT entries
DOS16 DOS file system with 16 bit FAT entries
DOSEXT DOS extended partition
DOSHP DOS huge partition
DSS12 DOS SpeedStor compatible with 12 bit FAT entries
DSS12L DOS speedStor extended with 12 bit FAT entries
DSS16 DOS SpeedStor compatible with 16 bit FAT entries
DSS16L DOS SpeedStor extended with 16 bit FAT entires

HDATAERR - Number of hard data errors

This device characteristic specifies the number of hard (non revoverable)
data read errors that have occured on this disk.

HDEVERR - Number of hard device errors

This device characteristic specifies the number of hard (non revoverable)
device access errors that have occured on this disk.

HIDFERR - Number of hard ID field errors

This device characteristic specifies the number of hard (non revoverable)
disk ID field read errors that have occured on this disk.

HOVRNERR - Number of hard DMA overrun errors

This device characteristic specifies the number of hard (non revoverable)
DMA receive errors that have occured on this disk.

HRNFERR - Number of hard record not found errors

This device characteristic specifies the number of hard (non revoverable)
record not found errors that have occured on this disk.

HSEEKSRR - Number of hard seek errors

This device characteristic specifies the number of hard (non revoverable)
seek errors that have occured on this disk.

HUNGERR - Numner of device time-outs

This device characteristic specifies the number of hard (non revoverable)
disk access timeout errors that have occured on this disk.

XOS Programmer's Guide
DISK Device Characteristics

214

IBLKSZ - Default block size

This device characteristic specifies the default block or sector size, in
bytes. This value is only used when a disk is mounted. At this time it is
copied to the value of the CBLKSZ characteristic to provide a default ini-
tial value. Note that for file structured disks, this value is immediately re-
placed by the value supplied by the parameters of the file system. The
value must be numeric in decimal format with a length of at least 2 bytes.

IBLOCKS - Initial total number of blocks on disk

This device characteristic specifies the initial total number of blocks for
this disk.

ICYLNS - Default number of cylinders

This device characteristic specifies the default number of cylinders. This
value is only used when a disk is mounted. At this time it is copied to the
value of the CCYLNS characteristic to provide a default initial value. Note
that for file structured disks, this value is immediately replaced by the
value supplied by the parameters of the file system. The value must be nu-
meric in decimal format with a length of at least 2 bytes.

IHEADS - Default number of heads

This device characteristic specifies the default number of heads. This
value is only used when a disk is mounted. At this time it is copied to the
value of the CHEADS characteristic to provide a default initial value.
Note that for file structured disks, this value is immediately replaced by
the value supplied by the parameters of the file system. The value must be
numeric in decimal format with a length of at least 2 bytes.

ISECTS - Initial number of sectors per track

This device characteristic specifies the default number of sectors. This
value is only used when a disk is mounted. At this time it is copied to the
value of the CSECTS characteristic to provide a default initial value. Note
that for file structured disks, this value is immediately replaced by the
value supplied by the parameters of the file system. The value must be nu-
meric in decimal format with a length of at least 4 bytes.

MODEL - Device model description

This is a text string returned by the disk giving the manufacturers descrip-
tion.

Device Characteristics - Chapter 13
DISK Device Characteristics

215

MSENSOR - Disk has media sensor

This read-only device characteristic reports if the disk has a media sensor.
This is only meaningful for removable disks. Possible values are YES and
NO. Fixed disks always return NO. The value must be text with a length
of at least 4 bytes.

PARTN - Partition number

This read-only device characteristic reports the partition number for a hard
disk partition. This is the index (1 based) for the partition table entry for
the partition. If the partition is in an extended partition, the index for the
entry of the extended partition ored with 0x80 is returned. If the device is
not a partition, a value of 0 is returned. The value must be numeric in hex
format, with a length of at least 1 byte.

PARTOFF - Partition table offset

This read-only device characteristic reports the block offset for a disk par-
tition. This is the block number on the underlying disk for the first block
of the partition. The value must be numeric in decimal format, with a
length of at least 4 bytes.

PROTECT - File access protection

This device characteristic specifies YES or NO to indicated if file access
protection is enabled.

RAMAX - Maximum read-ahead blocks

Specifies the maximum number of blocks to read ahead into the disk cache
when a program requests a block of data not currently in the cache.

REMOVE - removable

This device characteristic specifies if a disk is removable or fixed. Possi-
ble values are YES (removable) and NO (fixed). The value of this charac-
teristic cannot be changed for hard disks and is always NO. The value
must be text with a length of at least 4 bytes.

REVISION - Device revision number

This is a text string returned by the disk giving the manufacturers revision
number for the drive.

XOS Programmer's Guide
DISK Device Characteristics

216

ROOTBLK - First block for root directory

This device characteristic specifies the starting block on disk for the root
directory.

ROOTPROT - Root directory protection

This device characteristic specifies the root directory protection status.

ROOTSIZE - Size of root directory

This device characteristic specifies the total number of blocks used by the
root directory.

SERIALNO - Device serial number or other data

This read-only device characteristic returns the hard disk controller’s se-
rial number. If the controller does not report this information, a null string
is returned. The value must be a string with a buffer length of at least 22
bytes.

SHRDELAY - File sharing delay factor

This device characteristic specifies time interval for retrying access to a
locked file or region.

SHRFAIL - Number of file sharing failures

This device characteristic specifies the number of failures in access to a
locked file or region.

SHRRETRY - Number of file sharing retries

This device characteristic specifies the number of times to retry access to a
locked file or region.

TDATAERR - Total number of data errors

This device characteristic specifies the total number of hard (non
revoverable) data read errors that have occured on this disk.

TDEVERR - Total number of device errors

This device characteristic specifies the total number of hard (non
revoverable) device access errors that have occured on this disk.

Device Characteristics - Chapter 13
DISK Device Characteristics

217

TIDFERR - Total number of ID field errors

This device characteristic specifies the total number of hard (non
revoverable) disk ID field read errors that have occured on this disk.

TOVRNERR - Total number of DMA overrun errors

This device characteristic specifies the total number of hard (non
revoverable) DMA receive errors that have occured on this disk.

TRNFERR - Total number of record not found errors

This device characteristic specifies the total number of hard (non
revoverable) record not found errors that have occured on this disk.

TSEEKERR - Total number of seek errors

This device characteristic specifies the number of hard (non revoverable)
seek errors that have occured on this disk.

UNITTYPE - Unit type

This device characteristic specifies the type of a disk unit. For hard disks,
the value of this characteristic is always HARD and cannot be changed.
Valid values for floppy disks are:

Value Meaning
HARD Hard disk
HD3 3.5" high density
DD3 3.5" double density
HD5 5.25" high density
DD5 5.25" double density
DD8 8" double density

The value must be text with a length of at least 4 bytes.

VOLCDT - Volume creation date and time

This device characteristic specifies the time and data this volume was cre-
ated.

VOLEDT - Volume effective date and time

This device characteristic specifies the the volumes effective use date and
time (ISO 9660 CD-ROM).

XOS Programmer's Guide
DISK Device Characteristics

218

VOLLABEL - Volume label

This device characteristic specifies the label for this disk volume.

VOLMDT - Volume modification date and time

This device characteristic specifies the last time this disk volume was
modified.

VOLNAME - Volume name for disk

This device characteristic specifies an alternate name for a disk.

VOLXDT - Volume expiration date and time

This device characteristic specifies the expiration date and time for this
volume.

WTMAX - Write transfer limit

This device characteristic specifies the harware write limit in blocks that
this disk device can transfer in one operation.

Device Characteristics - Chapter 13
DISK Device Characteristics

219

HDKA Type Disk Devices (PC-AT hard disk)

This section describes the device characteristics which are specific to the HDKA
type disk device. This device supports the standard PC-AT hard disk controller. This
includes the original ST-501 controller, ESDI controllers, and IDE controllers. It
does not include the PS-2 disk controllers or most SCSI controllers. SCSI control-
lers which fully emulate the PC-AT hard disk controller registers in hardware can be
used, but none of the extra features of these controllers are supported by this device.

Hard disks use all of the common DISK class device characteristics listed previ-
ously plus the characteristics described here. Table 13.4 summarizes the hard disk
specific device characteristics.

Table 13.4 - Device characteristics for HDKA type disks
Name Fnc Format Size Description

BUFSIZE GS DECV 4 Size of internal disk buffer
CONFIG GS HEXV 4 Disk configuration bits
MCYLNS G DECV 4 Number of mapped cylinders reported by

drive
MHEADS G DECV 4 Number of mapped heads reported by

drive
MSECTS G DECV 4 Number of mapped sectors reported by

drive
SECPINT G DECV 4 Maximum sectors per interrupt
UXINTERR GS DECV 4 Number of unexpected interrupts

The hard disk specific device characteristics are described in detail below.

BUFSIZE - Size of internal disk buffer

This read-only device characteristic returns the length of the hard disk
controller’s internal data buffer in bytes. If the controller is not buffered or
does not report the length of its buffer, a value of 0 is returned. The value
must be numeric in decimal format with a length of at least 4 bytes.

CONFIG - Disk configuration bits

Device bits returned by IDE controller

MCYLNS - Number of mapped cylinders reported by drive

XOS Programmer's Guide
DISK Device Characteristics

220

MHEADS - Number of mapped heads reported by drive

MSECTS - Number of mapped sectors reported by drive

SECPINT - Maximum sectors per interrupt

This read-only device characteristic returns the maximum number of sec-
tors which the hard disk controller can transfer with a single interrupt. If
the controller is not capable of multi-sector per interrupt operation or it
does not report this information, a value of 0 is returned. The value must
be numeric in decimal format with a length of at least 4 bytes.

UXINTERR - Number of unexpected interrupts

Device Characteristics - Chapter 13
DISK Device Characteristics

221

SDSK Type Disk Devices (SCSI controllers)

This section describes the device characteristics which are specific to the SDSK
type disk device. This device supports all disks which are connected to the system
using a SCSI interface.

SDSK hard disks use all of the common DISK class device characteristics listed pre-
viously plus the characteristics described here. Table 13.6 summarizes the SDSK
specific device characteristics.

Table 13.6 - Device characteristics for SDSK type disks
Name Fnc Format Size Description

SCSIDEV G TEXT 16 SCSI device
SCSILUN G DECV 1 SCSI logical unit number
SCSITAR G DECV 1 SCSI target ID

The following section describes these device characteristics in detail.

SCSIDEV - SCSI device

This read-only characteristic returns the name of the SCSI controller de-
vice associated with this disk device. The value must be text with a length
of at least 16 bytes.

SCSILUN - SCSI logical unit number

This read-only characteristic returns the SCSI logical unit number of the
SCSI disk. The value must be numeric with a length of 1 byte or more.

SCSITAR - SCSI target ID

This read-only characteristic returns the SCSI target number of the SCSI
disk. The value must be numeric with a length of 1 byte or more.

XOS Programmer's Guide
DISK Device Characteristics

222

FDKA Type Disk Devices (floppy disk)

This section describes the device characteristics which are specific to the FDKA
type disk device. This device supports the standard PC-AT floppy disk controller
(NEC 765/Intel 8272) and the CompatiCard-I add-in floppy disk controller made by
Micro Solutions, Inc. This controller uses the same chip as the standard PC-AT con-
troller but provides slightly more flexibility in supporting non-standard floppy
types, especially 8" floppies.

Floppy disks use all of the common DISK class device characteristics listed previ-
ously plus the characteristics described here. Table 13.7 summarizes the floppy disk
specific device characteristics.

Table 13.7 - Device characteristics for floppy disks
Name Fnc Format Size Description

CONDESP G TEXT 4 Controller description
DATADEN GS TEXT 8 Data density
HLTIME GS DECV 2 Head load time in milliseconds
HUTIME GS DECV 2 Head unload time in milliseconds
MOTIME GS DECV 1 Motor off time in seconds
MSTIME GS DECV 4 Motor start time in milliseconds
SRTIME GS DECV 1 Step rate timing in milliseconds
TRKDEN GS DECV 1 Track density
XGAPLEN GS DECV 2 Gap length for transfers

The floppy disk specific device characteristics are described in detail below.

CONDESP - Controller description

This read-only device characteristic returns the description of the floppy
disk controller. Possible valid values are:

Value Meaning

PCAT Standard AT floppy controller

CMPT CompatiCard floppy controller

The value must be text with a length of at least 4 bytes.

DATADEN - Data density

This device characteristic specifies the data density for the floppy disk
drive. Valid values are:

Device Characteristics - Chapter 13
DISK Device Characteristics

223

Value Meaning
SINGLE Single density floppy disk
DOUBLE Double density floppy disk
HIGH High density floppy disk

The value must be text with a length of at least 8 bytes.

HLTIME - Head load time

This device characteristic specifies the head load time (in milliseconds) for
the floppy disk. The value must be numeric in decimal format with a
length of at least 2 bytes.

HUTIME - Head unload time

This device characteristic specifies the head unload time (in milliseconds)
for the floppy disk. The value must be numeric in decimal format with a
length of at least 2 bytes.

MOTIME - Motor off time

This device characteristic specifies the motor off time (in seconds) for the
floppy disk. The value must be numeric in decimal format with a length of
at least 1 byte.

MSTIME - Motor start time

This device characteristic specifies the motor start time (in milliseconds)
for the floppy disk. The value must be numeric in decimal format with a
length of at least 4 bytes.

SRTIME - Step rate timing

This device characteristic specifies the step rate (in milliseconds) for the
floppy disk. The value must be numeric in decimal format with a length of
at least 1 byte.

TRKDEN - Track density

This device characteristic specifies the track density for the floppy disk
drive. For 3.5" disks this value is always 135 and cannot be changed. For
5.25" disks this value may be 48 or 96. The value must be numeric in deci-
mal format with a length of at least 1 byte.

XOS Programmer's Guide
DISK Device Characteristics

224

XGAPLEN - Gap length for transfers

This device characteristic specifies the inter record gap value used with
data transfers for the floppy disk. The value must be numeric in decimal
format with a length of at least 2 bytes.

Device Characteristics - Chapter 13
DISK Device Characteristics

225

SPL Device Characteristics

This section describes the device characteristics that are specific to SPL class de-
vices. These are “spooled” devices that are a special kind of disk device that allow
the automatic generation of file names and automatic closing (and reopening if nec-
essary) of files after some period of inactivity. This is normally used to capture out-
put that appears to be directed to a printer or other physical output device to a disk
file for later transfer to the actual physical device. The automatic closing fearture is
provided mainly to allow spooled printer output from DOS programs, which usually
do not open or close a printer dvice, but simply write to it with a special DOS or
BIOS function.

The SPL device characteristics are summerized in table 13.8 below.

Table 13.8 - Device characteristics for SPL class devices
Name Fnc Format Size Description

CLSNAME S STR 48 File name for closed file

CLSMSG S TEXT 16 Destination for close message

CLSTIME S DECV 4 Inactive close time-out value (seconds)

SEQNUM S DECV 4 File name sequence number

SPLSPEC S STR 256 File specification for spooled file

The following section describes the device characteristics for SPL class devices in
detail.

CLSNAME - File name for closed file

When a spooled file is closed, it is automatically renamed to the name
specified by this device characteristic. The name or extension must con-
tain the # character, which indicates that the current value of the spooled
name sequence number is to be inserted. The # must be followed by a sin-
gle digit which specifies the number of digits to insert. For example, if the
CLSNAME value is S01_#4.SPL and the SEQNUM value is 52, the final
name for the closed file will be S01_0052.SPL. The value must be a string
with a buffer length of at least 48 bytes.

CLSMSG - Destination for close message

When a spooled file is closed, an IPM (Interprocess Message Device)
message is sent to the destination specified by the value of this device
characteristic. This will normally be the IPM name used by the

XOS Programmer's Guide
SPL Device Characteristics

226

UNSPOOL symbiont which is unspooling the spooled device. The value
must be text with a length of no more than 16 bytes.

CLSTIME - Inactive close time-out value (seconds)

This device characteristic specifies the maximum idle time (in seconds)
for a spooled file. A spooled file is closed automatically if no output is
done to the file for this interval. A value of 0 disables the automatic close
feature. The value must be numeric in decimal format with a length of 4
bytes.

SEQNUM - File name sequence number

This device characteristic specifies the current spool name sequence num-
ber. This number is used when generating both the initial spooled file
name and final closed spooled name. It is incremented by 1 whenever it is
used. The value must be numeric in hex format with a length of 4 bytes.

SPLSPEC - File specification for spooled file

This device characteristic specifies the name which is used when opening
a spooled file. Its value must be a complete file specification including a
device name, directory path, name, and extension. The device specified
must be a mass storage device. It can be either local or remote. The name
or extension must contain the # character, which indicates that the current
value of the spooled name sequence number is to be inserted. The # must
be followed by a single digit which specifies the number of digits to insert.
For example, if the SPLSPEC value is C:\SPOOL\S01_#4.TMP and the
SEQNUM value is 193, the initial spooled file will be
C:\SPOOL\S01_0193.TMP. The value must be a string with a buffer
length of at least 256 bytes.

Device Characteristics - Chapter 13
SPL Device Characteristics

227

TAPE Device Characteristics

There are a number of device characteristics which are used by all TAPE class de-
vices and there are a smaller number which are specific to individual types of TAPE
controllers. The common characteristics for tapes are summarized in table 13.9

Table 13.9 - Device characteristics for TAPE class devices
Name Fnc Format Size Description

BYTEIN GS DECV 4 Total number of bytes input

BYTEOUT GS DECV 4 Total number of bytes output

DTHLIMIT GS DECV 4 Data transfer hardware limit

HDATAERR GS DECV 4 Number of hard data errors

HDEVERR GS DECV 4 Number of hard device errors

HOVRNERR GS DECV 4 Number of hard overrun errors

HUNGERR GS DECV 4 Number of hung device errors

MODEL G STR 44 Device model description

RECIN GS DECV 4 Total number of records input

RECMAX GS DECV 4 Maximum allowed record length

RECMIN GS DECV 4 Minimum allowed record length

RECOUT GS DECV 4 Total number of records output

REVISION G STR 12 Device revision number

SERIALNO G STR 24 Device serial number or other data

TDATAERR GS DECV 4 Total number of data errors

TDEVERR GS DECV 4 Total number of device errors

TOVRNERR GS DECV 4 Total number of overrun errors

The following section describes the device characteristics for TAPE class devices in
detail.

BYTEIN - Number of bytes input

This read-write device characteristic returns the number of bytes written to
the disk.

BYTEOUT - Number of bytes output

This read-write device characteristic returns the number of bytes read from
the disk.

XOS Programmer's Guide
TAPE Device Characteristics

228

DTHLIMIT - Data transfer hardware limit

This device characteristic specifies the harware limit in records that this
tape device can transfer in one operation.

HDATAERR - Number of hard data errors

This device characteristic specifies the number of hard (non revoverable)
data read errors that have occured on this tape drive.

HDEVERR - Number of hard device errors

This device characteristic specifies the number of hard (non revoverable)
device access errors that have occured on this tape drive.

HIDFERR - Number of hard ID field errors

This device characteristic specifies the number of hard (non revoverable)
disk ID field read errors that have occured on this tape drive.

HOVRNERR - Number of hard DMA overrun errors

This device characteristic specifies the number of hard (non revoverable)
DMA receive errors that have occured on this tape drive.

HUNGERR - Numner of device time-outs

This device characteristic specifies the number of hard (non revoverable)
disk access timeout errors that have occured on this tape drive.

MODEL - Device model description

This is a text string returned by the tape drive giving the manufacturers de-
scription.

RECIN - Number of records input

This read-write device characteristic returns the number of records written
to the tape.

RECMAX - Maximum allowed record length

This read-write device characteristics specifies the maximum allowed re-
cord length.

RECMIN - Minimum allowed record length

This read-write device characteristics specifies the minimum allowed re-
cord length.

Device Characteristics - Chapter 13
TAPE Device Characteristics

229

RECOUT - Number of records output

This read-write device characteristic returns the number of records read
from the tape.

REVISION - Device revision number

This is a text string returned by the disk giving the manufacturers revision
number for the tape drive.

SERIALNO - Device serial number or other data

This read-only device characteristic returns the tape controller’s serial
number. If the controller does not report this information, a null string is
returned. The value must be a string with a buffer length of at least 22
bytes.

TDATAERR - Total number of data errors

This device characteristic specifies the total number of hard (non
revoverable) data read errors that have occured on this tape drive.

TDEVERR - Total number of device errors

This device characteristic specifies the total number of hard (non
revoverable) device access errors that have occured on this tape drive.

TOVRNERR - Total number of overrun errors

This device characteristic specifies the total number of hard (non
revoverable) overrun errors that have occured on this tape drive.

XOS Programmer's Guide
TAPE Device Characteristics

230

STAP Type Tape Devices (SCSI controllers)

This section describes the device characteristics which are specific to the STAP type
tape device. This device supports all tape drives which are connected to the system
using a SCSI interface.

STAPE tape drives use all of the common TAPE class device characteristics listed
previously plus the characteristics described here. Table 13.10 summarizes the
SDSK specific device characteristics.

Table 13.10 - Device characteristics for STAPE type tape drivess
Name Fnc Format Size Description

SCSIDEV G TEXT 16 SCSI device
SCSILUN G DECV 1 SCSI logical unit number
SCSITAR G DECV 1 SCSI target ID

The following section describes these device characteristics in detail.

SCSIDEV - SCSI device

This read-only characteristic returns the name of the SCSI controller de-
vice associated with this tape device. The value must be text with a length
of at least 16 bytes.

SCSILUN - SCSI logical unit number

This read-only characteristic returns the SCSI logical unit number of the
SCSI tape drive. The value must be numeric with a length of 1 byte or
more.

SCSITAR - SCSI target ID

This read-only characteristic returns the SCSI target number of the SCSI
tape drive. The value must be numeric with a length of 1 byte or more.

Device Characteristics - Chapter 13
TAPE Device Characteristics

231

TRM Device Characteristics

This section describes the device charactericts which are specific to the various
types of TRM class devices. These are serial port, console, psuedo-console, and
telnet TRM devices.

TRM (Serial Port) Devices

This section describes the device characteristics which are specific to TRM class se-
rial port devices. This includes serial ports using the SERA driver (standard AT se-
rial ports) and ports using the SERB driver (DigiBoard multi-port serial interface).
Table 13.11 summarizes the TRM class serial port device characteristics.

Table 13.11 - Device characteristics for TRM class serial ports
Name Fnc Format Size Description

ACCESS GS TEXT 4 System access class
CHARIN GS DECV 4 Number of characters input
CHAROUT GS DECV 4 Number of characters output
DBITS GS DECV 1 Current number of data bits
IDBITS GS DECV 1 Initial number of data bits
IINFLOW GS TEXT 8 Initial input flow control
IINRATE GS DECV 4 Initial input baud rate
IMODEM GS TEXT 4 Initial modem control
INFLOW GS TEXT 8 Current input flow control
INLBS GS DECV 2 Output ring buffer size
INRATE GS DECV 4 Current input baud rate (not used)
INRBHELD GS DECV 4 Input ring buffer held count
INRBLOST GS DECV 4 Input ring buffer lost count
INRBPL GS DECV 2 Input ring buffer panic level
INRBS G DECV 2 Input ring buffer size
INRBSL GS DECV 2 Input ring buffer stop level
INT G DECV 1 Interrupt level
INTRBS G DECV 2 Interrupt ring buffer size
INTRHELD GS DECV 4 Interrupt ring buffer held count
INTRLOST GS DECV 4 Interrupt ring buffer lost count
INTRPL GS DECV 2 Interrupt ring buffer panic level
INTRS G DECV 2 Interrupt ring buffer size

XOS Programmer's Guide
TRM Device Characteristics

232

Table 13.11 - Device characteristics for TRM class serial ports
Name Fnc Format Size Description

INTRSL GS DECV 2 Interrupt ring buffer stop level
IOUTFLOW GS TEXT 8 Initial output flow control
IOUTRATE GS DECV 4 Initial output baud rate
IPARITY GS TEXT 8 Initial parity handling
IRATE GS DECV 4 Initial baud rate
ISBITS GS DECV 1 Initial number of stop bits
KBCHAR GS DECV 4 Keyboard characters
MODEM GS TEXT 4 Current modem control
MSGDST GS STR 16 Destination for initial message
OUTFLOW GS TEXT 8 Current output flow control
OUTRATE GS DECV 4 Current output baud rate
OUTRS G DECV 2 Output ring buffer size
PARITY GS TEXT 8 Current parity handling
PASSWORD GS STR 8 Password
PROGRAM GS STR 16 Initial program to run
RATE GS DECV 4 Current baud rate
RATEDET GS DECV 1 Baud rate detect type
SBITS GS DECV 1 Current number of stop bits
SESSION GS TEXT 8 Allow user session on port
STSREG GS HEXV 4 Status I/O register number (SERB only)

The following section describes the device characteristics for TRM class serial port
devices in detail.

DBITS - Current number of data bits

This device characteristic specifies the current number of data bits in each
character sent or received on the serial port. A value specified for this
characteristic takes effect immediately and is in effect until the device is
opened after being idle. At this time the value of this characteristic is ini-
tialized from the value of the IDBITS characteristic. The value must be
between 5 and 8. Values less than 5 are taken as 5 and those greater than 8
are taken as 8. The value must be numeric in decimal format with a length
of at least one byte.

IDBITS - Initial number of data bits

This device characteristic specifies the initial number of data bits in each
character sent or received on the serial port. A value specified for this
characteristic is not used directly but is used to initialize the value of the
DBITS characteristic when the device is opened after being idle. The

Device Characteristics - Chapter 13
TRM Device Characteristics

233

value must be between 5 and 8. Values less than 5 are taken as 5 and those
greater than 8 are taken as 8. The value must be numeric in decimal format
with a length of at least one byte.

IINFLOW - Initial input flow control

This device characteristic specifies the initial input flow control handling.
A value specified for this characteristic is not used directly but is used to
initialize the value of the INFLOW characteristic when the device is
opened after being idle. The valid values for this characteristic are:

Value Meaning
DSRDTR Hardware flow control using DSR and DTR
DSR Same as DSRDTR
CTSRTS Hardware flow control using CTS and RTS
CTS Same as CTSRTS
REVCTS Same as CTSRTS but with reversed sense
REV Same REVCTS
XONXOFF Flow control using XON and XOFF characters
XON Same as XONXOFF
NONE No flow control

The value must be text with a length of at least 8 bytes.

IINRATE - Initial input baud rate

This device characteristic specifies the initial input baud rate for the serial
port. Since SERA and SERB devices do not support separate input and
output baud rate specifications, setting the value of this characteristic has
no effect. The value returned is the value of the IRATE characteristic.

IMODEM - Initial modem control

This device characteristic specifies the initial modem control handling
state for the serial port. A value specified for this characteristic is not used
directly but is used to initialize the value of the MODEM characteristic
when the device is opened after being idle. Valid values for this character-
istic are YES (port uses modem control features) and NO (port does not
use modem control features). The value must be text with a length of at
least 4 bytes.

INFLOW - Current input flow control

This device characteristic specifies the current input flow control handling
state. The value specified for this parameter takes effect immediately and

XOS Programmer's Guide
TRM Device Characteristics

234

is in effect until the next time the device is opened while idle. At this time,
the value of this characteristic is initialized to be the same as the value of
the IINFLOW characteristic. The valid values for this characteristic are:

Value Meaning
DSRDTR Hardware flow control using DSR and DTR
DSR Same as DSRDTR
CTSRTS Hardware flow control using CTS and RTS
CTS Same as CTSRTS
REVCTS Same as CTSRTS but with reversed sense
REV Same REVCTS
XONXOFF Flow control using XON and XOFF characters
XON Same as XONXOFF
NONE No flow control

The value must be text with a length of at least 8 bytes.

INLBS - Output ring buffer size

This read-only characteristic returns the size of the output ring buffer for
the serial port. This buffer is allocated when the device is created and is
used to buffer all data output to the port. The value must be numeric in
decimal format with a length of at least 2 bytes.

INRATE - Current input baud rate

This device characteristic specifies the current input baud rate for the se-
rial port. Since SERA and SERB devices do not support separate input and
output baud rate specifications, setting the value of this characteristic has
no effect. The value returned is the value of the RATE characteristic.

INRBS - Input ring buffer size

This read-only characteristic returns the size of the input ring buffer for
the serial port. This buffer is allocated when the device is created and is
used to type ahead data. The value must be numeric in decimal format
with a length of at least 2 bytes.

INT - Interrupt level

This read-only characteristic returns the interrupt being used by the serial
port. The value must be numeric in decimal format with a length of at least
1 byte.

Device Characteristics - Chapter 13
TRM Device Characteristics

235

INTRBS - Interrupt ring buffer size

This read-only characteristic returns the size of the interrupt ring buffer for
the serial port. This buffer is allocated when the device is created and is
used to buffer input data and output done indications at interrupt level.
The value must be numeric in decimal format with a length of at least 2
bytes.

IOUTFLOW - Initial output flow control

This device characteristic specifies the initial output flow control handling.
A value specified for this characteristic is not used directly but is used to
initialize the value of the OUTFLOW characteristic when the device is
opened after being idle. The valid values for this characteristic are:

Value Meaning
DSRDTR Hardware flow control using DSR and DTR
DSR Same as DSRDTR
CTSRTS Hardware flow control using CTS and RTS
CTS Same as CTSRTS
REVCTS Same as CTSRTS but with reversed sense
REV Same REVCTS
XONXOFF Flow control using XON and XOFF characters
XON Same as XONXOFF
NONE No flow control

The value must be text with a length of at least 8 bytes.

IOUTRATE - Initial output baud rate

This device characteristic specifies the initial output baud rate for the se-
rial port. Since SERA and SERB devices do not support different input
and output baud rates, this characteristic is equivalent to the IRATE char-
acteristic. The value must be numeric in decimal format with a length of at
least 4 bytes.

IPARITY - Initial parity handling

This device characteristic specifies the initial output parity handling state
for the serial port. A value specified for this characteristic is not used di-
rectly but is used to initialize the value of the PARITY characteristic when
the device is opened after being idle. Valid values for this characteristic
are:

XOS Programmer's Guide
TRM Device Characteristics

236

Value Meaning
NONE No parity bit is added
MARK A marking bit is always added
SPACE A spacing bit is always added
ODD A bit is added to generate odd parity
EVEN A bit is added to generate even parity

The value must be text with a length of at least 4 bytes.

IRATE - Initial baud rate

This device characteristic specifies the initial baud rate for the serial port.
A value specified for this characteristic is not used directly but is used to
initialize the value of the RATE characteristic when the device is opened
after being idle. The baud rate value may be any positive number. If the
value is less than the lowest baud rate supported by the interface, that rate
is used; otherwise the system selects the highest available baud rate which
is not greater than the value specified. The value must be numeric in deci-
mal format with a length of at least 2 bytes.

ISBITS - Initial number of stop bits

This device characteristic specifies the initial number of stop bits for the
serial port. A value specified for this characteristic is not used directly but
is used to initialize the value of the SBITS characteristic when the device
is opened after being idle. The value must be 1 or 2. Values less than 1 are
taken as 1 and those greater than 2 are taken as 2. The value must be nu-
meric in decimal format with a length of at least one byte.

MODEM - Current modem control

This device characteristic specifies the current modem control handling
state for the serial port. A value specified for this characteristic takes effect
immediately and stays in effect until the next time the device is opened
while idle. At this time the value of this characteristic is initialized from
the value of the IMODEM characteristic. Valid values for this characteris-
tic are YES (port uses modem control features) and NO (port does not use
modem control features). The value must be text with a length of at least 4
bytes.

OUTFLOW - Current output flow control

This device characteristic specifies the current output flow control han-
dling state. The value specified for this parameter takes effect immediately
and is in effect until the next time the device is opened while idle. At this

Device Characteristics - Chapter 13
TRM Device Characteristics

237

time, the value of this characteristic is initialized to be the same as the
value of the IOUTFLOW characteristic. The valid values for this charac-
teristic are:

Value Meaning
DSRDTR Hardware flow control using DSR and DTR
DSR Same as DSRDTR
CTSRTS Hardware flow control using CTS and RTS
CTS Same as CTSRTS
REVCTS Same as CTSRTS but with reversed sense
REV Same REVCTS
XONXOFF Flow control using XON and XOFF characters
XON Same as XONXOFF
NONE No flow control

The value must be text with a length of at least 8 bytes.

OUTRATE - Current output baud rate

This device characteristic specifies the current output baud rate for the se-
rial port. Since SERA and SERB devices do not support different input
and output baud rates, this characteristic is equivalent to the RATE charac-
teristic. The value must be numeric in decimal format with a length of at
least 4 bytes.

PARITY - Current parity handling

This device characteristic specifies the current output parity handling state
for the serial port. A value specified for this characteristic takes effect im-
mediately and stays in effect until the next time the device is opened while
idle. At this time the value of this characteristic is initialized from the
value of the IPARITY characteristic. Valid values for this characteristic
are:

Value Meaning
NONE No parity bit is added
MARK A marking bit is always added
SPACE A spacing bit is always added
ODD A bit is added to generate odd parity
EVEN A bit is added to generate even parity

The value must be text with a length of at least 4 bytes.

XOS Programmer's Guide
TRM Device Characteristics

238

RATE - Current baud rate

This device characteristic specifies the current baud rate for the serial port.
A value specified for this characteristic takes effect immediately and stays
in effect until the next time the device is opened while idle. At this time
the value of this characteristic is initialized from the value of the IRATE
characteristic. The baud rate value may be any number. If the value is less
than the lowest baud rate supported by the interface, that rate is used; oth-
erwise the system selects the highest available baud rate which is not
greater than the value specified. The value must be numeric in decimal
format with a length of at least 2 bytes.

RATEDET - Baud rate detect type

This parameter specifies the baud rate detect method to be used for auto-
matic baud rate determination. This feature is not fully implemented in the
current version of XOS.

SBITS - Current number of stop bits

This device characteristic specifies the current number of stop bits for the
serial port. A value specified for this characteristic takes effect immedi-
ately and stays in effect until the next time the device is opened while idle.
The value of this characteristic is initialized from the value of the ISBITS
characteristic. The value must be 1 or 2. Values less than 1 are taken as 1
and those greater than 2 are taken as 2. The value must be numeric in deci-
mal format with a length of at least 1 byte.

SESSION - Allow user session on port

This characteristic specifies if the port can be used to control a user ses-
sion. Normally, this characteristic will have the value YES or NO. If the
value is YES, any input from the serial port while the port is idle causes
the system to create a new process and run a command shell with the port
as the controlling terminal. If the value is NO, input from the serial port
while it is idle is ignored. The value may also be set to any sequence of
characters beginning with an underscore character. In this case, the system
will send an IPM message to the IPM name formed by removing the un-
derscore from the characteristic value whenever there is input from the se-
rial port and it is idle. The user must have a program running which has
opened an IPM device with this name and is prepared to receive the mes-
sages. This is intended to provide a method of implementing non-standard
terminal based systems. The value must be text with a length of at least 8
bytes.

Device Characteristics - Chapter 13
TRM Device Characteristics

239

STSREG - Status I/O register number (SERB only)

This read-only characteristic returns the I/O register number of the
DigiBoard status register. It is only valid for SERB type devices. Each
DigiBoard has a single status register, regardless of the number of ports
which it supports. The number of this status register is used by the system
to identify the board (as opposed to the individual ports). The value must
be numeric in hex format with a length of at least 2 bytes.

XOS Programmer's Guide
TRM Device Characteristics

240

TRM (Console) Devices

This section describes the device characteristics which are specific to TRM class
console devices. This includes consoles using the MGAA (Hercules compatible
monochrome graphics adapter), EGAA (Enhanced Graphics Adapter and
compatibles), and VGAA (Virtual Graphics Array and compatibles) type devices.
Table 13.12 summarizes the TRM class console device characteristics.

Table 13.12 - Device characteristics for TRM class consoles
Name Fnc Format Size Description

BELLFREQ GS DECV 2 Bell tone frequency
BELLLEN GS DECV 2 Bell tone length
CHARIN GS DECV 4 Number of characters input
CHAROUT GS DECV 4 Number of characters output
CURFIX GS TEXT 4 Special cursor fix-up enable
INLBS GS DECV 4 Input line buffer size
INRBHELD GS DECV 4 Number of times input held for flow

control
INRBLOST GS DECV 4 Number of input characters discarded
INRBPL GS DECV 4 Input ring buffer panic level
INRBS GS DECV 4 Input ring buffer size
INRBSL GS DECV 4 Input ring buffer stop level
IOUTFLOW GS TEXT 4 Initial output flow control
KBCHAR GS DECV 4 Number of keyboard scan codes input
KBTCHAR GS DECV 4 Total number of keyboard scan codes

input
OUTFLOW GS TEXT 4 Current output flow control
PASSWORD GS STR 12 System level password for console
PROGRAM GS STR 4 Initial program to run
SESSION GS TEXT 4 Allow session on console
SCSVTIME GS DECV 4 Screen saver time (seconds)
SCSVTYPE GS TEXT 4 Screen saver type

The following section describes the device characteristics for TRM class console
devices in detail.

BELLFREQ - Bell tone frequency

This device characteristic specifies the frequency (in Hertz) for the bell
tone associated with the console. The value must be numeric with a length
of at least 2 bytes.

Device Characteristics - Chapter 13
TRM Device Characteristics

241

BELLLEN - Bell tone length

This device characteristic specifies the length (in milliseconds) of the bell
tone generated when a BELL (Cntl-G) character is output. The value must
be numeric with a length of at least 2 bytes.

CHARIN - Number of characters input

This device characteristic records the number of characters input by the
device. The value must be numeric in decimal format with a length of 4
bytes.

CHAROUT - Number of characters output

This device characteristic records the number of characters output by the
device. The value must be numeric in decimal format with a length of 4
bytes.

CURFIX - Special cursor fix-up enable

This device characteristic specifies if the special cursor fix-up mode is en-
abled. Some display adapters do not correctly display a full block cursor.
When the special fix up mode is enabled, full block cursors are reduced by
one scan line. Valid values are YES (indicating that the special fix-up
mode is enabled) and NO (indicating that the special fix-up mode is dis-
abled). The value must be text with a length of at least 4 bytes.

INLBS

This device characteristic returns the size of the input line buffer for the
device. This value is specified when the console device is created and can-
not be subsequently changed. The value must be numeric in decimal for-
mat with a length of at least 4 bytes.

INRBHELD

This device characteristic records the number of times that input flow con-
trol has been held of input because the input ring buffer was nearly full
(See description of the INRBSL device characteristic). The value must be
numeric in decimal format with a length of at least 4 bytes.

INRBLOST

This device characteristic records the number of input characters which
have been discarded because the input ring buffer was full. The value must
be numeric in decimal format with a length of at least 4 bytes.

XOS Programmer's Guide
TRM Device Characteristics

242

INRBPL

This device characteristic specifies the level at which “panic mode” is
used to hold off input. This is only relevant when using XON/XOFF flow
control. When the input buffer fills up to the level specified by the
INRBSL characteristic a single XOFF character is output to attempt to
stop input. No additional response is made until the number of character
positions available is less than the level specified by the value of this pa-
rameter. At this point, an XOFF character is output for every input charac-
ter received. A value of 0 for this characteristic disables the panic mode
response. The value must be numeric in decimal format with a length of at
least 4 bytes.

INRBS

This device characteristic returns the size of the input ring buffer for the
device. This value is specified when the console device is created and can-
not be changed after that. The input ring buffer is used to buffer type
ahead. The value must be numeric in decimal format with a length of at
least 4 bytes.

INRBSL - Input ring buffer stop level

This device characteristic specifies the level at which input is held off. The
level is specified as the number of character positions available at which
point input is to be held off. The value must be numeric in decimal format
with a length of at least 4 bytes.

IOUTFLOW - Initial output flow control

This device characteristic specifies the current output flow control han-
dling state. The value specified for this parameter takes effect immediately
and is in effect until the next time the device is opened while idle. At this
time, the value of this characteristic is initialized to be the same as the
value of the IOUTFLOW characteristic. The valid values for this charac-
teristic are:

Value Meaning

XONXOFF Flow control using XON and XOFF characters

XON Same as XONXOFF

NONE No flow control

The value must be text with a length of at least 8 bytes.

Device Characteristics - Chapter 13
TRM Device Characteristics

243

KBCHAR - Number of keyboard scan codes input

This device characteristic records the number of scan codes generated by
the console keyboard for this device. This includes both make and break
codes. The value must be numeric in decimal format with a length of at
least 4 bytes.

KBTCHAR - Total number of keyboard scan codes input

This device characteristic records the total number of scan codes generated
by the console keyboard for all devices which can be associated with it.
This includes both make and break codes. The value must be numeric in
decimal format with a length of at least 4 bytes.

OUTFLOW - Current output flow control

This device characteristic specifies the current output flow control han-
dling state. The value specified for this parameter takes effect immediately
and is in effect until the next time the device is opened while idle. At this
time, the value of this characteristic is initialized to be the same as the
value of the IOUTFLOW characteristic. The valid values for this charac-
teristic are:

Value Meaning
XONXOFF Flow control using XON and XOFF characters
XON Same as XONXOFF
NONE No flow control

The value must be text with a length of at least 8 bytes.

PASSWORD - System level password for console

This device characteristic specifies the system level password associated
with the terminal device. If a password is specified, it must be entered
whenever a session is started on the terminal. The value must be a string
with a buffer length of at least 12 bytes.

PROGRAM - Initial program to run

This device characteristic specifies the name of the program to run ini-
tially when a session is started on the terminal. If no name is specified, ei-
ther SHELL.IMG or LOGIN.IMG is run, depending on whether user
logins are enabled for the system. Only a name can be specified. The pro-
gram must be in the directory specified by the XOSSYS: logical name.
The value must be a string with a buffer length of at least 16 bytes.

XOS Programmer's Guide
TRM Device Characteristics

244

SESSION - Allow session on console

This characteristic specifies if the port can be used to control a user ses-
sion. Normally, this characteristic will have the value YES or NO. If the
value is YES, any input from the serial port while the port is idle causes
the system to create a new process and run a command shell with the port
as the controlling terminal. If the value is NO, input from the serial port
while it is idle is ignored. The value may also be set to any sequence of
characters beginning with an underscore character. In this case, the system
will send an IPM message to the IPM name formed by removing the un-
derscore from the characteristic value whenever there is input from the se-
rial port and it is idle. The user must have a program running which has
opened an IPM device with this name and is prepared to receive the mes-
sages. This is intended to provide a method of implementing non-standard
terminal based systems. The value must be text with a length of at least 8
bytes.

SCSVTIME - Screen saver time

This device characteristic specifies the time (in seconds) for the screen
saver function. The screen is blanked if there is no keyboard activity for
this time interval. It is unblanked as soon as any keyboard activity occurs.
A value of 0 disables the screen saver function. The value must be numeric
with a length of at least 2 bytes.

SCSVTYPE - Screen saver type

This device characteristic specifies the behavior of the screen saver func-
tion. A value of K or KEY specifies that only keyboard activity will be
considered when blanking or unblanking the screen. A value of F or FULL
specifies that program output to the screen will also be considered. The
value must be text with a length of at least 4 bytes.

Device Characteristics - Chapter 13
TRM Device Characteristics

245

TRM (Pseudo-Console) Devices

This section describes the device characteristics which are specific to TRM class de-
vices which are the client side of a PCN (pseudo-console) device. These devices are
true TRM class devices although they do not correspond to a physical terminal de-
vice. They are used by various servers (specifically by the Telnet server) to emulate
a real terminal. Table 13.13 summarizes the TRM class console device characteris-
tics.

Table 13.13 - Device characteristics for TRM class consoles
Name Fnc Format Size Description

INLBS G DECV 4 Input line buffer size
INRBS G DECV 4 Input ring buffer size
PASSWORD GS STR 12 System level password for terminal
PROGRAM GS STR 16 Initial program to run
SESSION GS TEXT 4 Allow session on console

The following section describes the device characteristics for TRM class
pseudo-console devices in detail.

INLBS - Input line buffer size

This device characteristic returns the size of the input line buffer for the
device. This value is specified when the console device is created and can-
not be changed after that. The value must be numeric in decimal format
with a length of at least 4 bytes.

INRBS - Input ring buffer size

This device characteristic returns the size of the input ring buffer for the
device. This value is specified when the console device is created and can-
not be subsequently changed. The input ring buffer is used to buffer type
ahead. The value must be numeric in decimal format with a length of at
least 4 bytes.

PASSWORD - System level password for terminal

This device characteristic specifies the system level password associated
with the terminal device. If a password is specified, it must be entered
whenever a session is started on the terminal. The value must be a string
with a buffer length of at least 12 bytes.

XOS Programmer's Guide
TRM Device Characteristics

246

PROGRAM - Initial program to run

This device characteristic specifies the name of the program to run ini-
tially when a session is started on the terminal. If no name is specified, ei-
ther SHELL.IMG or LOGIN.IMG is run, depending on whether user
logins are enabled for the system. Only a name can be specified. The pro-
gram must be in the directory specified by the XOSSYS: logical name.
The value must be a string with a buffer length of at least 16 bytes.

SESSION - Allow session on console

This device characteristic specifies if the port can be used to control a user
session. Normally, this characteristic will have the value YES or NO. If
the value is YES, any input from the serial port while the port is idle
causes the system to create a new process and run a command shell (or the
login program if user login is enabled for the system) with the port as the
controlling terminal. If the value is NO, input from the serial port while it
is idle is ignored. The value may also be set to any sequence of characters
beginning with an underscore character. In this case, the system will send
an IPM message to the IPM name formed by removing the underscore
from the characteristic value whenever there is input from the serial port
and it is idle. The user must have a program running which has opened an
IPM device with this name and is prepared to receive the messages. This is
intended to provide a method of implementing non-standard terminal
based systems. The value must be text with a length of at least 4 bytes.

Device Characteristics - Chapter 13
TRM Device Characteristics

247

TRM (Telnet) Devices

This section describes the device characteristics which are specific to TRM class de-
vices which are the client side of a PCN (pseudo-console) device. These devices are
true TRM class devices although they do not correspond to a physical terminal de-
vice. They are used by various servers (specifically by the Telnet server) to emulate
a real terminal. Table 13.14 summarizes the TRM class console device characteris-
tics.

Table 13.14 - Device characteristics for TRM class consoles
Name Fnc Format Size Description

INLBS G DECV 4 Input line buffer size
INRBS G DECV 4 Input ring buffer size
PASSWORD GS STR 12 System level password for terminal
PROGRAM GS STR 16 Initial program to run
SESSION GS TEXT 4 Allow session on console

The following section describes the device characteristics for TRM class
pseudo-console devices in detail.

INLBS - Input line buffer size

This device characteristic returns the size of the input line buffer for the
device. This value is specified when the console device is created and can-
not be subsequently changed. The value must be numeric in decimal for-
mat with a length of at least 4 bytes.

INRBS - Input ring buffer size

This device characteristic returns the size of the input ring buffer for the
device. This value is specified when the console device is created and can-
not be changed after that. The input ring buffer is used to buffer
type-ahead. The value must be numeric with a length of at least 4 bytes.

PASSWORD - System level password for terminal

This device characteristic specifies the system level password associated
with the terminal device. If a password is specified, it must be entered
whenever a session is started on the terminal. The value must be a sting
with a buffer length of at least 12 bytes.

XOS Programmer's Guide
TRM Device Characteristics

248

PROGRAM - Initial program to run

This device characteristic specifies the name of the program to run ini-
tially when a session is started on the terminal. If no name is specified, ei-
ther SHELL.IMG or LOGIN.IMG is run, depending on whether user
logins are enabled for the system. Only a name can be specified. The pro-
gram must be in the directory specified by the XOSSYS: logical name.
The value must be a string with a buffer length of at least 16 bytes.

SESSION - Allow session on terminal

This device characteristic specifies if the port can be used to control a user
session. Normally, this characteristic will have the value YES or NO. If
the value is YES, any input from the serial port while the port is idle
causes the system to create a new process and run a command shell (or the
login program if user login is enabled for the system) with the port as the
controlling terminal. If the value is NO, input from the serial port while it
is idle is ignored. The value may also be set to any sequence of characters
beginning with an underscore character. In this case, the system will send
an IPM message to the IPM name formed by removing the underscore
from the characteristic value whenever there is input from the serial port
and it is idle. The user must have a program running which has opened an
IPM device with this name and is prepared to receive the messages. This is
intended to provide a method of implementing non-standard terminal
based systems. The value must be text with a length of at least 4 bytes.

Device Characteristics - Chapter 13
TRM Device Characteristics

249

PCN Device Characteristics

This section describes the device characteristics for PCN class devices. These are
summarized in Table 13.15.

Table 13.15 - Device Characteristics for PCN Class Devices
Name Fnc Format Size Description

INLBS GS DECV 4 Input line buffer size
INRBS GS DECV 4 Input ring buffer size
PASSWORD GS STR 12 System level password
PROGRAM GS STR 16 Initial program to run
SESSION GS TEXT 4 Allow session on terminal

Following is a detailed description of the device characteristic defined for the PCN
device class.

INLBS - Input line buffer size

This device characteristic specifies the size of the line buffer which is allo-
cated when a PCN device is opened. This will be the value returned by the
INLBS device characteristic for the terminal class device associated with
the PCN device. The value must be numeric in decimal format with a
length of at least 4 bytes.

INRBS - Input ring buffer size

This device characteristic specifies the size of the input ring buffer which
is allocated when a PCN device is opened. This buffer is used to hold type
ahead data. This will be the value returned by the INRBS device charac-
teristic for the terminal class device associated with the PCN device. The
value must be numeric in decimal format with a length of at least 4 bytes.

PASSWORD - System level password

This device characteristic specifies the initial value for the PASSWORD
device characteristic for TRM class devices associated with the PCN de-
vice. The value must be a string with a buffer length of at least 12 bytes.

PROGRAM - Initial program to run

This device characteristic specifies the initial value for the PROGRAM
device characteristic for TRM class devices associated with the PCN de-
vice. The value must be string with a buffer length of at least 16 bytes.

XOS Programmer's Guide
PCN Device Characteristics

250

SESSION - Allow session on terminal

This device characteristic specifies the initial value for the SESSION de-
vice characteristic for TRM class devices associated with the PCN device.
The value must be text with a length of at least 4 bytes.

Device Characteristics - Chapter 13
PCN Device Characteristics

251

IPM Device Characteristics

There are no device characteristics associated with the IPM class devices.

XOS Programmer's Guide
IPM Device Characteristics

252

NULL Device Characteristics

The NULL class device is a dummy device which discards all output and always re-
turns an end-of-file condition on input. There are no device characteristics associ-
ated with the NULL class devices.

Device Characteristics - Chapter 13
NULL Device Characteristics

253

PPR Device Characteristics

This section describes the device characteristics for PPR class devices. These are
summarized in Table 13.16.

Table 13.16 - Device Characteristics for PPR Class Devices
Name Fnc Format Size Description

INT G DECV 1 Interrupt number
TIMEOUT GS HEXV 4 Default time-out value

Following is a detailed description of the device characteristic defined for the PPR
device class.

INT - Interrupt number

This device characteristic returns the interrupt number for the device. This
value cannot be changed after the device is created. The value must be nu-
meric in decimal format with a length of at least 1 byte.

TIMEOUT - Default time-out value

This device characteristic specifies the default time out value in seconds.
If no time out value is specified when doing output to the PPR device, this
value is used to determine when to return “a no response” error. A value of
0 indicates no time out. The value must be numeric in decimal format with
a length of at least 4 bytes.

XOS Programmer's Guide
PPR Device Characteristics

254

NET Device Characteristics

This section describes the device characteristics which are specific to NET class de-
vices. The NET devices are the low level network interfaces. These devices can be
used to send and receive raw network data, but are most useful for obtaining statis-
tics about the operation of the network using the device characteristics described
here. Even though multiple NET DCBs are created as needed to allow multiple pro-
cesses to access the network, the various error and usage counters accessed with
these device characteristics reflect the total usage of the network interface.

This section first describes the device characteristics which are used by all NET
class devices. This is followed by descriptions of the device characteristics which
are specific to each type of NET device.

Table 13.17 summarizes the common device characteristics for the NET class de-
vices.

Table 13.17 - Device characteristics for NET class devices
Name Fnc Format Size Description

BADPNT GS DECV 4 Number of packets discarded because of
bad ring pointer

BCPKTIN GS DECV 4 Number of broadcast packets input
BYTEIN GS DECV 4 Number of bytes input
BYTEOUT GS DECV 4 Number of bytes output
ICRC GS DECV 4 Number of input CRC errors
IFRAME GS DECV 4 Number of input framing errors
ILOST GS DECV 4 Number of lost input packets
INT G DECV 1 Interrupt level
IOVRRN GS DECV 4 Number of input overrun errors
NETADDR G HEXB 6 Physical network address
NOBFR GS DECV 4 Number of packets discarded because no

buffer available
NODST GS DECV 4 Number of packets discarded because no

destination for E-N protocol
OCOL GS DECV 4 Number of output collisions
OCSEN GS DECV 4 Number of output carrier lost errors
OHTBT GS DECV 4 Number of output heartbeat errors
OHUNG GS DECV 4 Number of hung output errors
OOWC GS DECV 4 Number of output out of window collisions
OUNDRN GS DECV 4 Number of output underrun errors
OXCOL GS DECV 4 Number of excessive output collisions

Device Characteristics - Chapter 13
NET Device Characteristics

255

Table 13.17 - Device characteristics for NET class devices
Name Fnc Format Size Description

PKTIN GS DECV 4 Number of packets input
PKTOUT GS DECV 4 Number of packets output

Following is a detailed description of each common device characteristic for the
NET class devices.

BADPNT - Number of packets discarded because of bad ring pointer

This device characteristic records the number of input packets discarded
because of an invalid network interface buffer ring pointer. This is an in-
ternal network interface error which should not occur if the hardware and
driver software are working correctly. The value must be numeric in deci-
mal format with a length of at least 4 bytes.

BCPKTIN - Number of broadcast packets input

This device characteristic records the total number of input broadcast
packets received. The value must be numeric in decimal format with a
length of at least 4 bytes.

BYTEIN - Number of bytes input

This device characteristic records the total number of bytes input. The
value must be numeric in decimal format with a length of at least 4 bytes.

BYTEOUT - Number of bytes output

This device characteristic records the total number of bytes output. The
value must be numeric in decimal format with a length of at least 4 bytes.

ICRC - Number of input CRC errors

This device characteristic records the total number of input CRC errors re-
ported by the network interface. Packets with bad CRCs are discarded.
The value must be numeric in decimal format with a length of at least 4
bytes.

IFRAME - Number of input framing errors

This device characteristic records the total number of input framing errors
reported by the network interface. Packets with framing errors are dis-
carded. The value must be numeric in decimal format with a length of at
least 4 bytes.

XOS Programmer's Guide
NET Device Characteristics

256

ILOST - Number of lost input packets

This device characteristic records the total number of lost input packets re-
ported by the network interface. A lost input packet is one that was dis-
carded because there was no space for it in the network interface’s internal
buffer. The value must be numeric in decimal format with a length of at
least 4 bytes.

INT - Interrupt level

This read-only device characteristic returns the interrupt level used by the
network interface. The value must be numeric in decimal format with a
length of at least 1 byte.

IOVRRN - Number of input overrun errors

This device characteristic records the total number of input overrun errors
reported by the network interface. The value must be numeric in decimal
format with a length of at least 4 bytes.

NETADDR - Physical network address

This read-only device characteristic returns the physical network address
of the network interface. XOS always uses the network address belonging
to the interface. It cannot be changed. The value must be a byte list in hex
format with a length of at least 6 bytes.

NOBFR - Number of packets discarded because no buffer available

This device characteristic records the total number of input packets dis-
carded because there was no system buffer available for the packet. The
value must be numeric in decimal format with a length of at least 4 bytes.

NODST - Number of packets discarded because no destination for E-N pro-
tocol

This device characteristic records the total number of input packets dis-
carded because there was no destination available for the ethernet protocol
type of the packet; i.e., no process or device driver was registered to han-
dle the protocol type and there was no default protocol handler registered.
The value must be numeric in decimal format with a length of at least 4
bytes.

OCOL - Number of output collisions

This device characteristic records the total number of output collisions re-
ported by the network interface. This includes output collisions which are

Device Characteristics - Chapter 13
NET Device Characteristics

257

retried by the interface. The value must be numeric in decimal format with
a length of at least 4 bytes.

OCSEN - Number of output carrier lost errors

This device characteristic records the total number of output carrier lost
errors reported by the network interface. The value must be numeric in
decimal format with a length of at least 4 bytes.

OHTBT - Number of output heartbeat errors

This device characteristic records the total number of output heartbeat er-
rors reported by the network interface. The value must be numeric in deci-
mal format with a length of at least 4 bytes.

OHUNG - Number of hung output errors

This device characteristic records the total number of times that an ex-
pected output done interrupt did not occur. The value must be numeric in
decimal format with a length of at least 4 bytes.

OOWC - Number of output out of window collisions

This device characteristic records the total number of out of window colli-
sions reported by the network interface. The value must be numeric in
decimal format with a length of at least 4 bytes.

OUNDRN - Number of output underrun errors

This device characteristic records the total number of output underrun er-
rors reported by the network interface. The value must be numeric in deci-
mal format with a length of at least 4 bytes.

OXCOL - Number of excessive output collisions

This device characteristic records the total number of excessive output col-
lisions reported by the network interface. An excessive output collision
occurs when the interface exceeds its maximum retry amount without be-
ing able to output a packet without a collision. The value must be numeric
in decimal format with a length of at least 4 bytes.

PKTIN - Number of packets input

This device characteristic records the total number of packets input. The
value must be numeric in decimal format with a length of at least 4 bytes.

XOS Programmer's Guide
NET Device Characteristics

258

PKTOUT - Number of packets output

This device characteristic records the total number of packets output. The
value must be numeric in decimal format with a length of at least 4 bytes.

Device Characteristics - Chapter 13
NET Device Characteristics

259

EWDA Network Interface Devices

This sections describes the device characteristics specific to the EWDA type net-
work interface. The EWDA interface uses these device characteristics in addition to
the common network interface device characteristics described previously.

Table 13.18 summarizes the device characteristics which are specific to EWDAtype
devices.

Table 13.18 - Device characteristics for EWDA network
interface devices

Name Fnc Format Size Description
MEM G HEXV 4 Shared memory address

The device characteristic specific to the ENWA type network interface is described
in detail below.

MEM - Shared memory address

This read-only device characteristic returns the physical address of the net-
work interface’s shared memory area. This address is specified when the
device is created and must match the value for which the board is config-
ured. The value must be numeric in hex format with a length of at least 4
bytes.

XOS Programmer's Guide
NET Device Characteristics

260

ENEA Network Interface Devices

This sections describes the device characteristics specific to the ENEAtype network
interface. The ENEA interface uses these device characteristics in addition to the
common network interface device characteristics described previously.

Table 13.19 summarizes the device characteristics which are specific to the ENEA
type device.

Table 13.19 - Device characteristics for ENEA network
interface devices

Name Fnc Format Size Description
BOARD G TEXT 12 Board type

Note that the ENEA type network interface does not use shared memory, so there is
no MEM device characteristic for this interface. The device characteristic specific to
the ENEA type network interface is described in detail below.

BOARD - Board type

This read-only device characteristic returns the type of interface board in
use. The ENEA type interface driver actually supports three types of
boards. The type is dynamically determined by the interface driver. This
characteristic reports the result of this determination. Possible values are:

Value Meaning
NE1000 Novell NE1000 or compatible
NE2000-8 Novell NE2000 or compatible in 8-bit slot
NE2000-16 Novell lNE2000 or compatible in 16-bit slot

The value must be text with a length of at least 12 bytes.

Device Characteristics - Chapter 13
NET Device Characteristics

261

E3CA Network Interface Devices

This sections describes the device characteristics specific to the E3CA type network
interface. The E3CA interface uses these device characteristics in addition to the
common network interface device characteristics described previously.

Table 13.20 summarizes the device characteristics which are specific to the E3CA
type device.

Table 13.20 - Device characteristics for E3CA network
interface devices

Name Fnc Format Size Description
MEM G HEXV 4 Shared memory address
THICK G TEXT 4 Interface uses thick-wire cable

The device characteristics specific to the E3CAtype network interface are described
in detail below.

MEM - Shared memory address

This read-only device characteristic returns the physical address of the net-
work interface’s shared memory area. This address is read from the
board’s configuration when the device is created. The value must be nu-
meric in hex format with a length of at least 4 bytes.

THICK - Interface uses thick-wire cable

This device characteristic controls the operation of the network interface’s
on board thin wire transceiver. Unlike most network interfaces, this inter-
face provides for software control of this feature. A value of YES disables
the on board transceiver and enables thick wire operation. A value of NO
disables thick wire operation and enables the on board transceiver. The
value must be text with a length of at least 4 bytes.

XOS Programmer's Guide
NET Device Characteristics

262

SNAP Device Characteristics

This section describes the device characteristics for SNAP class devices. SNAP
class devices provide access to the link control level for the Internet protocol stack
using the SNAP or Bluebook link level protocols. These device characteristics are
summarized in Table 13.21.

Table 13.21 - Device Characteristics for SNAP Class Devices
Name Fnc Format Size Description

BADPDU GS DECV 4 Number of physical data units with illegal
format

BYTEIN GS DECV 4 Number of bytes input from the network
BYTEOUT GS DECV 4 Number of bytes output to the network
NETDEV G TEXT 8 Name of associated network interface device
NODST G DECV 4 Number of packets discarded because no

destination available
PKTIN GS DECV 4 Number of packets input from the network
PKTOUT GS DECV 4 Number of packets output to the network
SAP GS HEXB 2 Service access point address

Following is a detailed description of the device characteristic defined for the SNAP
device class.

BADPDU - Number of physical data units with illegal format

This device characteristic records the number of input physical data units
(link level packets) which have been discarded because of an illegal for-
mat. The value must be numeric in decimal format with a length of at least
4 bytes.

BYTEIN - Number of bytes input from the network

This device characteristic records the total number of bytes input from the
network. The value must be numeric in decimal format with a length of at
least 4 bytes.

BYTEOUT - Number of bytes output from the network

This device characteristic records the total number of bytes output to the
network. The value must be numeric in decimal format with a length of at
least 4 bytes.

Device Characteristics - Chapter 13
SNAP Device Characteristics

263

NETDEV - Name of associated network interface device

This device characteristic reports the name of the underlying network in-
terface device. This will always be the name of a NET class device. The
value must be text with a length of at least 8 bytes.

NODST - Number of packets discarded because no destination available

This device characteristic reports the number of input packets that have
been discarded because no destination was available for the packet. In the
case of IP packets, this means that there was no routine established to han-
dle the IP protocol type that was specified in the packet. The value must be
numeric in decimal format with a length of at least 4 bytes.

PKTIN - Number of packets input from the network

This device characteristic reports the total number of input packets re-
ceived from the network. The value must be numeric in decimal format
with a length of at least 4 bytes.

PKTOUT - Number of packets output to the network

This device characteristic reports the total number of output packets output
to the network. The value must be numeric in decimal format with a length
of at least 4 bytes.

SAP - Service access point address

This device characteristic specifies the IEEE-802.2 service access point
address associated with this SNAP device. This value is usually specified
as two hex bytes. A value of 0FF-FF indicated that the SNAP device is
handling the Ethernet-II/Bluebook link level protocol instead of the 802.2
protocol. Any other value indicates an 802.2 protocol. A value of 0AA-AA
is the standard SAP value for the 802.2 SNAP protocol. The value must be
numeric in hex byte format with a length of at least 2 bytes.

XOS Programmer's Guide
SNAP Device Characteristics

264

ARP Device Characteristics

This section describes the device characteristics for ARP class devices. This device
provides access to the ARP protocol level in the Internet protocol stack. These de-
vice characteristics are summarized in Table 13.22.

Table 13.22 - Device Characteristics for ARP Class Devices
Name Fnc Format Size Description

BADHDR GS DECV 4 Number of packets discarded because of a
bad header

BYTEIN GS DECV 4 Number of ARP bytes input
BYTEOUT GS DECV 4 Number of ARP bytes output
ETYPE GS HEXB 2 Ethertype value
PKTIN GS DECV 4 Number of ARP packets input
PKTOUT GS DECV 4 Number of ARP packets output
SNAPDEV GS TEXT 8 Name of underlying SNAP device

Following is a detailed description of the device characteristic defined for the ARP
device class.

BADHDR - Number of packets discarded because of a bad header

This device characteristic records the number of ARP input packets that
have been discarded because of a bad header format. The value must be
numeric in decimal format with a length of at least 4 bytes.

BYTEIN - Number of ARP bytes input

This device characteristic records the total number of ARP bytes input.
The value must be numeric in decimal format with a length of at least 4
bytes.

BYTEOUT - Number of ARP bytes output

This device characteristic records the total number of ARP bytes output.
The value must be numeric in decimal format with a length of at least 4
bytes.

ETYPE - Ethertype value

This device characteristic specifies the Ethertype value for the protocol
suite with which the ARP device is associated. The value is usually speci-
fied as two hex bytes. When used with the IP protocol, the value is nor-

Device Characteristics - Chapter 13
ARP Device Characteristics

265

mally 08-06. The value must be numeric in hex format with a length of at
least 2 bytes.

PKTIN - Number of ARP packets input

This device characteristic records the total number of ARP packets input.
The value must be numeric in decimal format with a length of at least 4
bytes.

PKTOUT - Number of ARP packets output

This device characteristic records the total number of ARP packets output.
The value must be numeric in decimal format with a length of at least 4
bytes.

SNAPDEV - Name of underlying SNAP device

This device characteristic reports the name of the underlying SNAP (link
level) device in the network protocol stack. The value must be text with a
length of at least 8 bytes.

XOS Programmer's Guide
ARP Device Characteristics

266

IPS Device Characteristics

This section describes the device characteristics which are specific to IPS class de-
vices. The IPS devices are the lowest level network protocol devices which provide
access to the IP level of the Internet Protocol Suite. These devices can be used to
send and receive raw network data, but are most useful for obtaining statistics about
the operation of the network using the device characteristics described here. Even
though multiple IPS DCBs are created as needed to allow multiple processes to ac-
cess the network, the various error and usage counters accessed with these device
characteristics reflect the total usage at the IP protocol level.

Table 13.23 summarizes the device characteristics for the IPS class devices.

Table 13.23 - Device characteristics for the IPS device class
Name Fnc Format Size Description

ADJADDR G DECB 4 Adjacent node IP address
ARPDEV G TEXT 16 ARP device
BADHDR GS DECV 4 Discarded - bad header
BYTEIN GS DEVV 4 Number of bytes input
BYTEOUT GS DECV 4 Number of bytes output
CHKSUM GS DECV 4 Discarded - bad IP header checksum
CHKSUMH GS TEXT 8 IP checksum handling
CLASS GV TEST 16 Device class
DLLTHL GS DECV 4 Discarded - data header length
DOMAIN GS STR 64 Domain Name for system
DRT1ADDR GS DECB 4 Default router IP address
ETYPE GS DECB 2 Ethertype value
HOSTDOWN GS TEXT 4 Primary host system is down
IPADDR GS DECB 4 IP address
NAMESRVR GS TEXT 4 Domain Name Server on this system
NETMASK G DECB 4 IP network address mask
NODST GS DECV 4 Discarded - no destination for IP
NOMERGE GS DECV 1 Do not merge or split packets
NUMSNAP G DECV 1 Number of SNAP devices
PKTIN GS DECV 4 Number of packets input
PKTOUT GS DECV 4 Number of packets output
PSLTDL GS DECV 4 Discarded - packet data length
PSLTMN GS DECV 4 Discarded - packet minimum
RMTADDR GS DECB 4 Default remote IP address
RTPURGE GS DECV 4 IP routing table purge request

Device Characteristics - Chapter 13
IPS Device Characteristics

267

Table 13.23 - Device characteristics for the IPS device class
Name Fnc Format Size Description

RTREMOVE GS HEXV 1 IP routing table remove request
RTSIZE G DECV 4 IP routing table size
RTUSE G DECV 4 IP routing table usage
SNAPDEV G TEXT 16 SNAP device
SUBMASK GS HEXV 4 IP subnet address mask

Following is a detailed description of each device characteristic for IPS class de-
vices.

BADHDR - Number of packets discarded because of bad header

This device characteristic records the total number of IP packets discarded
because of an invalid header format. The value must be numeric in deci-
mal format with a length of at least 4 bytes.

BYTEIN - Number of bytes input

This device characteristic records the total number of bytes input for the IP
protocol. The value must be numeric in decimal format with a length of at
least 4 bytes.

BYTEOUT - Number of bytes output

This device characteristic records the total number of bytes output for the
IP protocol. The value must be numeric in decimal format with a length of
at least 4 bytes.

CHKSUM - Number of packets discarded because of bad IP header
checksum

This device characteristic records the total number of packets discarded
because of bad IP header checksum value. The value must be numeric in
decimal format with a length of at least 4 bytes.

CHKSUMH - IP checksum handling

This device characteristic specifies how IP checksums are handled by the
system. Valid values are:

Value Meaning
NONE No IP checksums are generated or checked
INPUT IP checksums are checked on input but not generated on output
OUTPUT IP checksums are generated on output but not checked on input
FULL IP checksums are checked on input and are generated on output

XOS Programmer's Guide
IPS Device Characteristics

268

Note that this device characteristic also controls how TCP and UDP
checksums are handled. The value must be text with a length of at least 8
bytes.

DLLTHL - Number of packets discarded because of bad packet header
length

This device characteristic records the number of IP input packets dis-
carded because the IP header length was invalid; either less than 20 bytes
or greater than the length of the packet. The value must be numeric in dec-
imal format with a length of at least 4 bytes.

DNSADDR - Primary Domain Name Server IP address

This device characteristic specifies the IP address of the primary Domain
Name Server for this system. If a value is not specified for this device
characteristic, the standard XOS Domain Name Server IP address is used.
This is node 1 on the same sub-net as the system sending the request. The
XOS ARP routines treat this address specially, allowing automatic routing
to a name server on the same sub-net. This is the usual case for XOS only
networks. If the system is to use a Domain Name Server running on a for-
eign system (such as Unix), this device characteristic is used to specify
that system. The value must be a byte list in decimal format with a length
of at least 4 bytes.

DOMAIN - Domain Name for system

This device characteristic specifies the Domain Name for the system. A
Domain Name must be specified if the system is to use the Domain Name
System for addressing other system or if it is to be addressable by Domain
Name by other systems. The name is specified as a list of names separated
by periods, just as Domain Names are normally written. The value must be
a string with a buffer length of at least 64 bytes.

HOSTDOWN - Primary host system is down

This device characteristic specifies the state of the primary host for this
system. The primary host is the remote system specified by the default re-
mote IP address (RMTADDR) device characteristic. Possible values for
this device characteristic are YES and NO. If the value of this characteris-
tic is YES, any attempt to establish a TCP connection to the default remote
IP address will fail with an ER_NHSNA error. Also, any attempt to send a
UDP datagram to that address will fail if the UDP device was opened with
the O$FNR bit (fail if not ready) set. The network drivers never change

Device Characteristics - Chapter 13
IPS Device Characteristics

269

the value of this device characteristic. It is intended to be set and cleared
by a user mode program which is keeping track of the availability of the
primary host system. This allows requests to access that system to fail im-
mediately when it is not available, instead of requiring a time out of 10 to
20 seconds or more. The initial value of this device characteristic is NO,
which means that it has no effect on the operation of the network interface
unless the value is changed by a program. The value must be text with a
length of at least 4 bytes.

INTRFACE - Network interface device

This read-only device characteristic returns the name of the NET class de-
vice which the IPS class device is using as a network interface. The name
is returned without a trailing colon. The value must be text with a length
of at least 8 bytes.

IPPROT - IP protocol

This device characteristic specifies the network protocol to be used for IP
packets. This protocol is normally not specified, since the system defaults
to the correct standard IP protocol value. The value must be a byte list in
hex format with a length of at least 2 bytes.

IPADDR - IP address

This device characteristic specifies the IP address for this system. This
must be specified if this system is to be part of a network. The value can
be changed at any time, although changing after the system has been con-
nected to a network can cause undefined network behavior. This is not rec-
ommended. The value must be a byte list in decimal format with a length
of at least 4 bytes.

NAMESRVR - Domain Name Server on this system

This device characteristic specifies if a Domain Name Server is running
on this system. Valid values are YES and NO. If the value is YES, the
ARP routines will respond to requests for node 1 on the same sub-net as
this system; if it is NO, it will not respond to this address. The initial value
for this characteristic is NO. The Domain Name Server sets it to YES dur-
ing initialization. The value must be text with a length of at least 4 bytes.

NODST - Number of packets discarded because no destination for protocol

This device characteristic records the total of IP input packets discarded
because there is no destination for the IP protocol, i.e., that there is no pro-
cess or device driver that has registered to handle the IP protocol specified

XOS Programmer's Guide
IPS Device Characteristics

270

in the packet. The value must be numeric in decimal format with a length
of at least 4 bytes.

PKTIN - Number of packets input

This device characteristic records the total number of IP packets input.
The value must be numeric in decimal format with a length of at least 4
bytes.

PKTOUT - Number of packets output

This device characteristic records the total number of IP packets output.
The value must be numeric in decimal format with a length of at least 4
bytes.

PSLTDL - Number of packets discarded because of bad data length

This device characteristic records the total number of IP input packets dis-
carded because the data length in the IP header specified a length longer
than the packet. The value must be numeric in decimal format with a
length of at least 4 bytes.

PSLTMN - Number of packets discarded because packet less than minimum

This device characteristic records the total number of IP input packets dis-
carded because the data length in the IP header specified a length too short
to include the IP header. The value must be numeric in decimal format
with a length of at least 4 bytes.

RMTADDR - Default remote IP address

This device characteristic specifies the default remote IP address. This ad-
dress is used whenever a request to send data over the network does not
specify an IP address. It also interacts with the HOSTDOWN device char-
acteristic as described in the description of that device characteristic. The
value of this device characteristic is initially 0, in which case the IP ad-
dress must always be specified. The value must be a byte list in hex format
with a length of at least 4 bytes.

RTPURGE - IP routing cache purge request

This device characteristic is used to manage the Internet Protocol routing
cache. Its behavior is somewhat unique compared to most other device
characteristics. The value returned is only meaningful when a value is also
specified. When a value is specified, it is taken as an IP address. If that ad-
dress is currently in the IP address cache, it is removed from the cache and
a value of 1 is returned. If it is not in the cache, a value of 0 is returned. If

Device Characteristics - Chapter 13
IPS Device Characteristics

271

a value of 0 is specified, the IP routing cache is cleared and a value of 1 is
returned. The value must be numeric in hex format with a length of at least
4 bytes.

RTSIZE - IP routing cache size

This read-only device characteristic returns the size of the IP routing
cache. The IP routing cache is allocated when the IPS device is created
and cannot be changed. The value must be numeric in decimal format with
a length of at least 4 bytes.

RTUSE - IP routing cache usage

This read-only device characteristic returns the number of entries currently
in use in the IP routing cache. The value must be numeric in decimal for-
mat with a length of at least 4 bytes.

SUBNET - IP subnet address mask

This device characteristic specifies the IP sub-net address mask. This
value defines which IP address bits specify a node on the local sub-net and
which specify the sub-net or network. A 1 bit indicates sub-net or network
specification and a 0 bit indicates node specification. For example, a value
of 0FF.FF.FF.0 indicates that the fourth byte of the IP address specifies a
node on the local sub-net and the first three bytes specify the sub-net or
network. This is probably the most commonly used sub-net mask value. It
corresponds to a class C Internet address. If this value is not specified,
0.0.0.0 is used, meaning that the entire address is used to specify nodes.
The value must be a byte list in hex format with a length of at least 4
bytes.

XOS Programmer's Guide
IPS Device Characteristics

272

UDP Device Characteristics

This section describes the device characteristics which are specific to UDP class de-
vices. The UDP devices provide access to the UDP protocol. These devices are com-
monly used to send and receive datagrams. While multiple UDP DCBs are created
as needed to allow multiple processes to access the network, the various error and
usage counters accessed with these device characteristics reflect the total usage at
the UDP protocol level.

Table 13.24 summarizes the device characteristics for the UDP class devices.

Table 13.24 - Device characteristics for UDP class devices
Name Fnc Format Size Description

IPSDEV G IPS device
IPPROT GS IP protocol value
RTREMOVE GS IP routing table remove request
HOSTDOW
N

GS TEXT 4 Primary host system is down

NAMESRV
R

GS TEXT 4 Domain Name Server on this system

PKTIN GS DECV 4 Number of packets input
BYTEIN GS DECV 4 Number of bytes input
PKTOUT GS DECV 4 Number of packets output
BYTEOUT GS DECV 4 Number of bytes output
CHKSUM GS DECV 4 Discarded - bad data checksum
NODST GS DECV 4 Discarded - no destination for port
IBLXCD GS Discarded - input buffer limit exceeded
BADHDR GS DECV 4 Discarded - bad header
PSLTMN GS DECV 4 Discarded - packet minimum
PSLTDL GS DECV 4 Discarded - packet data length

Following is a detailed description of each device characteristic for UDP class de-
vices.

BADHDR - Number of packets discarded because of bad header

This device characteristic records the number of UDP input packets dis-
carded because of an illegal header format. This value must be numeric in
decimal format with a length of at least 4 bytes.

Device Characteristics - Chapter 13
UDP Device Characteristics

273

BYTEIN - Number of bytes input

This device characteristic records the total number of UDP bytes input.
This value must be numeric in decimal format with a length of at least 4
bytes.

BYTEOUT - Number of bytes output

This device characteristic records the total number of UDP bytes output.
This value must be numeric in decimal format with a length of at least 4
bytes.

CHKSUM - Number of packets discarded because of bad UDP checksum

This device characteristic records the total number of UDP input packets
discarded because of a bad UDP data checksum. This value must be nu-
meric in decimal format with a length of at least 4 bytes.

HOSTDOWN - Primary host system is down

This device characteristic exactly duplicates the HOSTDOWN device
characteristic for IPS class devices. It is duplicated here to make it easier
for a program to indicate the state of the primary host system when send-
ing datagrams using a UDP device. If it were not available here, it would
be necessary to open an IPS device just for this purpose. This value must
be text with a length of at least 4 bytes.

NAMESRVR - Domain Name Server on this system

This device characteristic exactly duplicates the NAMESRVR device
characteristic for IPS class devices. It is duplicated here to make it easier
for the Domain Name Server program to set this value. This program uses
UDP devices but does not normally use any IPS devices. Having this de-
vice characteristic available eliminates the need to open an IPS device just
to set this value. This value must be text with a length of at least 4 bytes.

NODST - Number of packets discarded because no destination for UDP port

This device characteristic records the total number of UDP input packets
because there is no destination for the UDP port. This occurs when there is
no process with a pending input request for the UDP port specified as the
destination port in a UDP input packet. This value must be numeric in dec-
imal format with a length of at least 4 bytes.

XOS Programmer's Guide
UDP Device Characteristics

274

PKTIN - Number of packets input

This device characteristic records the total number of UDP packets input.
This value must be numeric in decimal format with a length of at least 4
bytes.

PKTOUT - Number of packets output

This device characteristic records the total number of UDP packets output.
This value must be numeric in decimal format with a length of at least 4
bytes.

PSLTDL - Number of packets discarded because of bad data length

This device characteristic records the total number of UDP packets dis-
carded because the data length specified in the UDP header was not con-
sistent with the length of the IP packet. This value must be numeric in
decimal format with a length of at least 4 bytes.

PSLTMN - Number of packets discarded because packet less than minimum

This device characteristic records the total number of UDP packets dis-
carded because the IP packet did not contain at least 8 bytes, which is the
length of the UDP header. This value must be numeric in decimal format
with a length of at least 4 bytes.

RTPURGE - IP routing table purge request

This device characteristic exactly duplicates the RTPURGE device charac-
teristic for IPS class devices. It is duplicated here to make it easier for a
program to clear the IP routing table when a response is not received to a
datagram sent using a UDP device. If it were not available here, it would
be necessary to open an IPS device just for this purpose. This value must
be numeric in decimal format with a length of at least 4 bytes.

Device Characteristics - Chapter 13
UDP Device Characteristics

275

TCP Device Characteristics

This section describes the device characteristics which are specific to TCP class de-
vices. The TCP devices provide access to the TCP protocol. These devices are used
by programs (such as servers) which need to directly access TCP virtual connec-
tions. While multiple TCP DCBs are created as needed to allow multiple processes
to access the network, the various error and usage counters accessed with these de-
vice characteristics reflect the total usage at the TCP protocol level.

Table 13.25 summarizes the device characteristics for TCP class devices.

Table 13.25 - Device characteristics for TCP class devices
Name Fnc Format Size Description

BADHDR GS DECV 4 Number of packets discarded because of
bad header

BYTEIN GS DECV 4 Number of bytes input
BYTEOUT GS DECV 4 Number of bytes output
CHKSUM GS DECV 4 Number of packets discarded because of

bad TCP checksum
CLOST GS DECV 4 Number of lost connections
FLOWOVR GS DECV 4 Number of packets discarded because of

flow control overrun
MERGED GS DEVC 4 Number of merged input packets
NOACK GS DECV 4 Number of packets discarded because ACK

not indicated
NODST GS DECV 4 Number of packets discarded because no

destination for TCP port
OOSMAX GS DECV 4 Maximum number of out-of-sequence input

packets queued
OOSMRGD GS DECV 4 Number of out-of-sequence input packets

merged
OOSNUM GS DECV 4 Number of out-of-sequence input packets

currently queued
OUTSEQ GS DECV 4 Number of packets discarded because of

out of sequence packet
OUTWIN GS DECV 4 Number of packets discarded because of

out of window packet
PKTIN GS DECV 4 Number of packets input
PKTOUT GS DECV 4 Number of packets output
PSLTHL GS DECV 4 Number of packets discarded because of

bad packet header length
PSLTMN GS DECV 4 Number of packets discarded because

packet less than minimum
RETRY1 GS DECV 4 First TCP re-transmission threshold

XOS Programmer's Guide
TCP Device Characteristics

276

Table 13.25 - Device characteristics for TCP class devices
Name Fnc Format Size Description

RETRY2 GS DECV 4 Second TCP re-transmission threshold
REXMIT GS DECV 4 Number of re-transmitted packets
RSTRCVD GS DECV 4 Number of resets received
RSTSENT GS DECV 4 Number of resets sent
UNXFIN GS DECV 4 Number of unexpected FIN packets re-

ceived

Following is a detailed description of each device characteristic for TCP class de-
vices.

BADHDR - Number of packets discarded because of bad header

This device characteristic records the total number of TCP input packets
discarded because of a bad header format. The value must be numeric in
decimal format with a length of at least 4 bytes.

BYTEIN - Number of bytes input

This device characteristic records the total number of TCP bytes input.
The value must be numeric in decimal format with a length of at least 4
bytes.

BYTEOUT - Number of bytes output

This device characteristic records the total number of TCP bytes output.
The value must be numeric in decimal format with a length of at least 4
bytes.

CHKSUM - Number of packets discarded because of bad TCP checksum

This device characteristic records the total number of TCP packets dis-
carded because of a bad TCP data checksum value. The value must be nu-
meric in decimal format with a length of at least 4 bytes.

CLOST - Number of lost connections

This device characteristic records the total number of lost TCP connec-
tions. A lost connections is one that is terminated because the remote sys-
tem failed to respond in the required length of time. The value must be
numeric in decimal format with a length of at least 4 bytes.

FLOWOVR - Number of packets discarded because of flow control overrun

This device characteristic records the number of input packets that have
been discarded because of flow control overflow, that is, packets which

Device Characteristics - Chapter 13
TCP Device Characteristics

277

are beyond the receive window. The value must be numeric in decimal
format with a length of at least 4 bytes.

MERGED - Number of merged input packets

This device characteristic records the number of input packets which have
been merged. Input packets are merged to allow more efficient memory
usage. This is especially important when a sequence of small packets are
received. The value must be numeric in decimal format with a length of at
least 4 bytes.

NOACK - Number of packets discarded because ACK not indicated

This device characteristic records the total number of TCP packets dis-
carded because the ACK bit was not set in the TCP header when it should
have been set. The value must be numeric in decimal format with a length
of at least 4 bytes.

NODST - Number of packets discarded because no destination for TCP port

This device characteristic records the total number of TCP input packets
discarded because there was no destination for the TCP port. This will oc-
cur if no process has opened a TCP device using the port or no device
driver has registered to handle the port. The value must be numeric in dec-
imal format with a length of at least 4 bytes.

OOSMAX - Maximum number of out-of-sequence input packets queued

This device characteristic records the maximum number of out of se-
quence input packets that have been queued at one time. The value must
be numeric in decimal format with a length of at least 4 bytes.

OOSMRGD - Number of out-of-sequence input packets merged

This device characteristic records the number of out of sequence input
packets that have been merged. The value must be numeric in decimal for-
mat with a length of at least 4 bytes.

OOSNUM - Number of out-of-sequence input packets currently queued

This device characteristic records the number of out of sequence input
packets that are currently queued. The value must be numeric in decimal
format with a length of at least 4 bytes.

XOS Programmer's Guide
TCP Device Characteristics

278

OUTSEQ - Number of packets discarded because of out of sequence packet

This device characteristic records the total number of TCP input packets
discarded because they were out of sequence. The value must be numeric
in decimal format with a length of at least 4 bytes.

OUTWIN - Number of packets discarded because of out of window packet

This device characteristic records the total number of TCP input packets
discarded because they were outside of the receive window. The value
must be numeric in decimal format with a length of at least 4 bytes.

PKTIN - Number of packets input

This device characteristic records the total number of TCP packets input.
The value must be numeric in decimal format with a length of at least 4
bytes.

PKTOUT - Number of packets output

This device characteristic records the total number of TCP packets output.
The value must be numeric in decimal format with a length of at least 4
bytes.

PSLTHL - Number of packets discarded because of bad packet header
length

This device characteristic records the total number of TCP input packets
discarded because of an invalid TCP header length. The value must be nu-
meric in decimal format with a length of at least 4 bytes.

PSLTMN - Number of packets discarded because packet less than minimum

This device characteristic records the total number of TCP input packets
discarded because the IP packet was not large enough to contain a com-
plete minimum TCP header (20 bytes). The value must be numeric in deci-
mal format with a length of at least 4 bytes.

RETRY1 - First TCP re-transmission threshold

This device characteristic specifies the first TCP re-transmission threshold.
This is the number of times a packet is retransmitted before re-routing is
attempted. The default value is 2. The value must be numeric in decimal
format with a length of at least 4 bytes.

Device Characteristics - Chapter 13
TCP Device Characteristics

279

RETRY2 - Second TCP re-transmission threshold

This device characteristic specifies the second TCP re-transmission thresh-
old. This is the total number of times a packet is re-transmitted before the
connection is terminated. This includes any re-transmissions before reach-
ing the first re-transmission threshold. If this value is less than or equal to
the RETRY1 value, re-routing will not be done. The default value is 5.
The value must be numeric in decimal format with a length of at least 4
bytes.

REXMIT - Number of retransmitted packets

This device characteristic records the total number of TCP output packets
which have been retransmitted. The value must be numeric in decimal for-
mat with a length of at least 4 bytes.

RSTRCVD - Number of resets received

This device characteristic records the total number of TCP reset packets
input. The value must be numeric in decimal format with a length of at
least 4 bytes.

RSTSENT - Number of resets sent

This device characteristic records the total number of TCP reset packets
output. The value must be numeric in decimal format with a length of at
least 4 bytes.

UNXFIN - Number of unexpected FIN packets received

This device characteristic records the total number of unexpected FIN
packets that have been received. A FIN packet is considered unexpected
when it is received on a port which does not have a connection. The value
must be numeric in decimal format with a length of at least 4 bytes.

XOS Programmer's Guide
TCP Device Characteristics

280

TLN Device Characteristics

This section describes the device characteristics for TLN class devices. The TLN
device implements a basic Telnet server as part of the XOS kernel. It actually con-
sists of a pair of devices: the TLN device and the corresponding TRM class device
which provides the functionality of a serial port TRM device. The TLN device can-
not do input or output directly, but is used only to access its device characteristics
which are used to control the operation of the Telnet server. These device character-
istics are summarized in Table 13.26.

Table 13.26 - Device Characteristics for TLN Class Devices
Name Fnc Format Size Description

BYTEIN GS DECV 4 Number of bytes input
BYTEOUT GS DECV 4 Number of bytes output
INLBS GS DECV 4 Input line buffer size
INRBS GS DECV 4 Input ring buffer size
OUTRBS GS DECV 4 Output ring buffer size
PASSWORD GS STR 12 System level password
PROTERR GS DECV 4 Number of protocol errors seen
PROGRAM GS TEXT 16 Initial program to run
RETRY1 GS DECV 4 First TCP re-transmission threshold
RETRY2 GS DECV 4 Second TCP re-transmission threshold
SESSION GS TEXT 4 Allow session on terminal
TLNPORT GS DECV 4 Telnet port number

Following is a detailed description of the device characteristics defined for the TLN
device class.

BYTEIN - Number of bytes input

This device characteristic records the total number of Telnet bytes input.
The value must be numeric in decimal format with a length of at least 4
bytes.

BYTEOUT - Number of bytes output

This device characteristic records the total number of Telnet bytes output.
The value must be numeric in decimal format with a length of at least 4
bytes.

Device Characteristics - Chapter 13
TLN Device Characteristics

281

INLBS - Input line buffer size

This device characteristic specifies the size of the line buffer which is allo-
cated when a connection is established to the Telnet server. This will be
the value returned by the INLBS device characteristic for the terminal
class device associated with the TLN device. The value must be numeric
in decimal format with a length of at least 4 bytes.

INRBS - Input ring buffer size

This device characteristic specifies the size of the input ring buffer which
is allocated when a connection is established to the Telnet server. This
buffer is used to hold type ahead data. This will be the value returned by
the INRBS device characteristic for the terminal class device associated
with the TLN device. The value must be numeric in decimal format with a
length of at least 4 bytes.

OUTRBS - Output ring buffer size

This device characteristic specifies the size of the output ring buffer which
is allocated when a connection is established to the Telnet server. This
buffer is used to hold output data. This will be the value returned by the
OUTRBS device characteristic for the terminal class device associated
with the TLN device. The value must be numeric in decimal format with a
length of at least 4 bytes.

PASSWORD - System level password

This device characteristic specifies the system level password associated
with the terminal device. If a password is specified, it must be entered
whenever a session is started on the terminal, that is, whenever a connec-
tion is established to the Telnet server. The value must be a string with a
buffer length of at least 12 bytes.

PROTERR - Number of protocol errors seen

This device characteristic reports the total number of Telnet protocol er-
rors detected. The value must be numeric in decimal format with a length
of at least 4 bytes.

PROGRAM - Initial program to run

This device characteristic specifies the name of the program to run ini-
tially when a session is started on the terminal. If no name is specified, ei-
ther SHELL.IMG or LOGIN.IMG is run, depending on if user logins are
enabled for the system. Only a name can be specified. The program must

XOS Programmer's Guide
TLN Device Characteristics

282

be in the directory specified by the XOSSYS: logical name. The value
must be a string with a buffer length of at least 16 bytes.

RETRY1 - First TCP re-transmission threshold

This device characteristic specifies the first TCP re-transmission threshold.
This is the number of times a packet is re-transmitted before re-routing is
attempted. The default value is 2. The value must be numeric in decimal
format with a length of at least 4 bytes.

RETRY2 - Second TCP re-transmission threshold

This device characteristic specifies the second TCP re-transmission thresh-
old. This is the total number of times a packet is re-transmitted before the
connection is terminated. This includes any re-transmissions before reach-
ing the first re-transmission threshold. If this value is less than or equal to
the RETRY1 value, re-routing will not be done. The default value is 5.
The value must be numeric in decimal format with a length of at least 4
bytes.

SESSION - Allow session on terminal

This device characteristic specifies if the associated TRM device can be
used to control a user session. Normally, this characteristic will have the
value YES or NO. If the value is YES, any input from the serial port while
the port is idle causes the system to create a new process and run a com-
mand shell (or the login program if user login is enabled for the system)
with the port as the controlling terminal. If the value is NO, input from the
serial port while it is idle is ignored. The value may also be set to any se-
quence of characters beginning with an underscore character. In this case,
the system will send an IPM message to the IPM name formed by remov-
ing the underscore from the characteristic value whenever there is input
from the serial port and it is idle. The user must have a program running
which has opened an IPM device with this name and is prepared to receive
the messages. This is intended to provide a method of implementing
non-standard terminal based systems. The value must be text with a length
of at least 4 bytes.

TLNPORT - Telnet port number

This device characteristic specifies the port number on which the Telnet
server listens for connections. The default value is 23, which is the stan-
dard Telnet public port. The value must be numeric in decimal format with
a length of at least 4 bytes.

Device Characteristics - Chapter 13
TLN Device Characteristics

283

RCP Device Characteristics

This section describes the device characteristics which are specific to RCP class de-
vices. The RCP devices provide access to the RCP protocol. These devices are used
by programs (such as servers) which need to directly access RCP virtual connec-
tions. While multiple RCP DCBs are created as needed to allow multiple processes
to access the network, the various error and usage counters accessed with these de-
vice characteristics reflect the total usage at the RCP protocol level.

The RCP protocol provides a reliable, packet oriented data path. It can be thought of
as a packet oriented version of TCP. It is layered on top of UDP, mainly to make it
ieasy to implement on systems which do not support direct access to the IP protocol
level

Table 13.27 summarizes the device characteristics for RCP class devices.

Table 13.27 - Device characteristics for RCP class devices
Name Fnc Format Size Description

BADHDR GS DECV 4 Number of packets discarded because of
bad header

BYTEIN GS DECV 4 Number of bytes input
BYTEOUT GS DECV 4 Number of bytes output
CHKSUM GS DECV 4 Number of packets discarded because of

bad TCP checksum
CLOST GS DECV 4 Number of lost connections
FLOWOVR GS DECV 4 Number of packets discarded because of

flow control overrun
MERGED GS DEVC 4 Number of merged input packets
NOACK GS DECV 4 Number of packets discarded because ACK

not indicated
NODST GS DECV 4 Number of packets discarded because no

destination for TCP port
OOSMAX GS DECV 4 Maximum number of out-of-sequence input

packets queued
OOSMRGD GS DECV 4 Number of out-of-sequence input packets

merged
OOSNUM GS DECV 4 Number of out-of-sequence input packets

currently queued
OUTSEQ GS DECV 4 Number of packets discarded because of

out of sequence packet
OUTWIN GS DECV 4 Number of packets discarded because of

out of window packet
PKTIN GS DECV 4 Number of packets input

XOS Programmer's Guide
RCP Device Characteristics

284

Table 13.27 - Device characteristics for RCP class devices
Name Fnc Format Size Description

PKTOUT GS DECV 4 Number of packets output
PSLTHL GS DECV 4 Number of packets discarded because of

bad packet header length
PSLTMN GS DECV 4 Number of packets discarded because

packet less than minimum
RETRY1 GS DECV 4 First TCP re-transmission threshold
RETRY2 GS DECV 4 Second TCP re-transmission threshold
REXMIT GS DECV 4 Number of re-transmitted packets
RSTRCVD GS DECV 4 Number of resets received
RSTSENT GS DECV 4 Number of resets sent
UNXFIN GS DECV 4 Number of unexpected FIN packets re-

ceived

Following is a detailed description of each device characteristic for TCP class de-
vices.

BADHDR - Number of packets discarded because of bad header

This device characteristic records the total number of TCP input packets
discarded because of a bad header format. The value must be numeric in
decimal format with a length of at least 4 bytes.

BYTEIN - Number of bytes input

This device characteristic records the total number of TCP bytes input.
The value must be numeric in decimal format with a length of at least 4
bytes.

BYTEOUT - Number of bytes output

This device characteristic records the total number of TCP bytes output.
The value must be numeric in decimal format with a length of at least 4
bytes.

CHKSUM - Number of packets discarded because of bad TCP checksum

This device characteristic records the total number of TCP packets dis-
carded because of a bad TCP data checksum value. The value must be nu-
meric in decimal format with a length of at least 4 bytes.

CLOST - Number of lost connections

This device characteristic records the total number of lost TCP connec-
tions. A lost connections is one that is terminated because the remote sys-

Device Characteristics - Chapter 13
RCP Device Characteristics

285

tem failed to respond in the required length of time. The value must be
numeric in decimal format with a length of at least 4 bytes.

FLOWOVR - Number of packets discarded because of flow control overrun

This device characteristic records the number of input packets that have
been discarded because of flow control overflow, that is, packets which
are beyond the receive window. The value must be numeric in decimal
format with a length of at least 4 bytes.

MERGED - Number of merged input packets

This device characteristic records the number of input packets which have
been merged. Input packets are merged to allow more efficient memory
usage. This is especially important when a sequence of small packets are
received. The value must be numeric in decimal format with a length of at
least 4 bytes.

NOACK - Number of packets discarded because ACK not indicated

This device characteristic records the total number of TCP packets dis-
carded because the ACK bit was not set in the TCP header when it should
have been set. The value must be numeric in decimal format with a length
of at least 4 bytes.

NODST - Number of packets discarded because no destination for TCP port

This device characteristic records the total number of TCP input packets
discarded because there was no destination for the TCP port. This will oc-
cur if no process has opened a TCP device using the port or no device
driver has registered to handle the port. The value must be numeric in dec-
imal format with a length of at least 4 bytes.

OOSMAX - Maximum number of out-of-sequence input packets queued

This device characteristic records the maximum number of out of se-
quence input packets that have been queued at one time. The value must
be numeric in decimal format with a length of at least 4 bytes.

OOSMRGD - Number of out-of-sequence input packets merged

This device characteristic records the number of out of sequence input
packets that have been merged. The value must be numeric in decimal for-
mat with a length of at least 4 bytes.

XOS Programmer's Guide
RCP Device Characteristics

286

OOSNUM - Number of out-of-sequence input packets currently queued

This device characteristic records the number of out of sequence input
packets that are currently queued. The value must be numeric in decimal
format with a length of at least 4 bytes.

OUTSEQ - Number of packets discarded because of out of sequence packet

This device characteristic records the total number of TCP input packets
discarded because they were out of sequence. The value must be numeric
in decimal format with a length of at least 4 bytes.

OUTWIN - Number of packets discarded because of out of window packet

This device characteristic records the total number of TCP input packets
discarded because they were outside of the receive window. The value
must be numeric in decimal format with a length of at least 4 bytes.

PKTIN - Number of packets input

This device characteristic records the total number of TCP packets input.
The value must be numeric in decimal format with a length of at least 4
bytes.

PKTOUT - Number of packets output

This device characteristic records the total number of TCP packets output.
The value must be numeric in decimal format with a length of at least 4
bytes.

PSLTHL - Number of packets discarded because of bad packet header
length

This device characteristic records the total number of TCP input packets
discarded because of an invalid TCP header length. The value must be nu-
meric in decimal format with a length of at least 4 bytes.

PSLTMN - Number of packets discarded because packet less than minimum

This device characteristic records the total number of TCP input packets
discarded because the IP packet was not large enough to contain a com-
plete minimum TCP header (20 bytes). The value must be numeric in deci-
mal format with a length of at least 4 bytes.

Device Characteristics - Chapter 13
RCP Device Characteristics

287

RETRY1 - First TCP re-transmission threshold

This device characteristic specifies the first TCP re-transmission threshold.
This is the number of times a packet is retransmitted before re-routing is
attempted. The default value is 2. The value must be numeric in decimal
format with a length of at least 4 bytes.

RETRY2 - Second TCP re-transmission threshold

This device characteristic specifies the second TCP re-transmission thresh-
old. This is the total number of times a packet is re-transmitted before the
connection is terminated. This includes any re-transmissions before reach-
ing the first re-transmission threshold. If this value is less than or equal to
the RETRY1 value, re-routing will not be done. The default value is 5.
The value must be numeric in decimal format with a length of at least 4
bytes.

REXMIT - Number of retransmitted packets

This device characteristic records the total number of TCP output packets
which have been retransmitted. The value must be numeric in decimal for-
mat with a length of at least 4 bytes.

RSTRCVD - Number of resets received

This device characteristic records the total number of TCP reset packets
input. The value must be numeric in decimal format with a length of at
least 4 bytes.

RSTSENT - Number of resets sent

This device characteristic records the total number of TCP reset packets
output. The value must be numeric in decimal format with a length of at
least 4 bytes.

UNXFIN - Number of unexpected FIN packets received

This device characteristic records the total number of unexpected FIN packets that
have been received. A FIN packet is considered unexpected when it is received on a
port which does not have a connection. The value must be numeric in decimal for-
mat with a length of at least 4 bytes.

XOS Programmer's Guide
RCP Device Characteristics

288

XFP Device Characteristics

This section describes the device characteristics which are specific to XFP class de-
vices. The XFP devices implement an XFP client which is used to transparently ac-
cess remote file systems. To a program, an XFP device looks almost exactly like a
local file structured disk. Normally, XFP devices are transparent to device character-
istics, that is, device characteristics specified for an XFP device apply to the remote
file system being accessed, not to the XFP device itself. If an XFP device is opened
without a network address or file specification, any device characteristics refer-
enced apply directly to the XFP device. These XFP device characteristics are de-
scribed in this section. While multiple XFP DCBs are created as needed to allow
multiple processes to access the network, the various error and usage counters ac-
cessed with these device characteristics reflect the total usage at the XFP protocol
level.

Table 13.27 summarizes the device characteristics for XFP class devices.

Table 13.27 - Device characteristics for XFP class devices
Name Fnc Format Size Description
BYTEIN S DECV 4 Number of bytes input
BYTEOUT S DECV 4 Number of bytes output
PKTIN S DECV 4 Number of messages input
PKTOUT S DECV 4 Number of messages output
PROERR S DECV 4 Number of protocol errors
RCPDEV S TEXT 16 RCP device
RETRY1 S DECV 1 First retransmission threshold
RETRY2 S DECV 1 Second retransmission threshold
RMTPORT S DECV 4 Remote server port

Following is a detailed description of each device characteristic for XFP class de-
vices.

BYTEIN - Number of bytes input

This device characteristic records the total number of XFP bytes input.
The value must be numeric in decimal format with a length of at least 4
bytes.

Device Characteristics - Chapter 13
XFP Device Characteristics

289

BYTEOUT - Number of bytes output

This device characteristic records the total number of XFP bytes output.
The value must be numeric in decimal format with a length of at least 4
bytes.

PKTIN - Number of messages input

This device characteristic records the total number of XFP messages input.
The value must be numeric in decimal format with a length of at least 4
bytes.

PKTOUT - Number of messages output

This device characteristic records the total number of XFP messages out-
put. The value must be numeric in decimal format with a length of at least
4 bytes.

PROERR - Number of protocol errors

This device characteristic records the total number of XFP protocol errors
which have occurred. The value must be numeric in decimal format with a
length of at least 4 bytes.

RCPDEV - RCP device

This device characteristic specifies the RCP device to use for connection to the re-
mote XFP server.

RETRY1 - First retransmission threshold

This device characteristic specifies the first retransmission threshold for
the XFP protocol.

RETRY2 - Second retransmission threshold

This device characteristic specifies the second retransmission threshold for
the XFP protocol.

RMTPORT - Remote server port

This device characteristic specifies the remote RCP port used to contact an
XFP server. This is a global value. When set, it is permanent and applies to
all XFP connections from the device, not just the currently open XFP de-
vice. Normally, this value should not be set, since it defaults to the correct
standard value. It may be changed if necessary to communicate with a

XOS Programmer's Guide
XFP Device Characteristics

290

non-standard XFP server. The value must be numeric in decimal format
with a length of at least 2 bytes.

Device Characteristics - Chapter 13
XFP Device Characteristics

291

Chapter 14

Add-Unit Characteristics

Add-unit characteristics have the same format as device characteristics. The are
used to specify various characteristcis when adding new devices using the
CF_ADDUNIT sub-function of the QFNC_CLASSFUNC function ofthe
svcIoQueue system call. While the format is the same as that of device characteris-
tics, only get PAR_SET function may be used. The PAR_GET function is not al-
lowed and descriptions are not returned. Since these characteristics cannot be
returned, the size specified is only advisory. Any size value field can be used which
will contain the value being specified.

In most cases, there are devcie characteristics with the same names as the add-unit
characteristics which generally allow the corresponding value to be read but not
modified. There are a few exceptions to this, but generally, values which can be
modified are set using device characteristics after a device has been added rather
that with an add-unit characteristic.

Many add-unit characteristics are required when adding a device. These are indi-
cated with a Y in theReqcolumn in the following tables. Other characteristics are
optional and a reasonal default value is used if the characteristic is not specified.

There are a number of add-unit characteristics that are global in the sense that they
are used by many different devices and when used by a device, always have the
same meaning. These characteristics are summerized in table 14.1 below.

Add-Unit Characteristics - Chapter 14

293

Table 14.1 - Common add-unit characteristics
Name Req Format Size Description

DMA Y DECV 1 DMA channel number
INDEX Y DECV 1 Index of unit on controller
INT Y DECV 1 Interrupt number
IOREG Y HEXV 2 Base I/O register number
MEM Y HEXV 4 Base memory address
TYPE Y TEXT 4 Device type
UNIT Y DECV 1 Unit number

These common characteristis are also listed in the tables for the individual device
types where they are allowed or required, but are only defined in detail here.

DMA - DMA channel number

This characteristic is used to specify the ISA bus DMA channel used by
DMA devices. It is only used by devices which use DMA and is generally
required by all such devices. It can have a numeric value of 1 to 3 (for
8-bit DMA channels) or 5 to 7 (for 16-bit DMA channels).

INDEX - Index of unit on controller

This characteristic is used by devices which support multiple device units
connected to a single controller and is required by all such devices. Gen-
erally, the first unit is specified by a value of 1, the second by a value of 2,
etc. The value must be numeric.

INT - Interrupt number

This characteristic is used by devices which use an interrupt which can be
specified and is required by all such devices. It should be noted that a
small number of devices (such as the AT floppy disk controller) have a
fixed interrupt number assignment and thus do not use the characteristic. It
must have a numeric value when must be between 2 and 15. Some devices
may not allow some values within this range.

IOREG - Base I/O register number

This characteristic is used by all devices which are associated with a par-
ticular set of hardware I/O registers. The value of this characteristic is the
number of the base I/O register for the device. Devices which require
specification of additional I/O register numbers define additional charac-
teristics for this purpose. The value must be numeric. The value must
never be greater than 0xFFFF and some devices restrict the value to a
lower maximum.

XOS Programmer's Guide

294

TYPE - Device type

This device characteristic is used by device classes which use different de-
vice level drivers to support different types of hardware. Its value specifies
the specific type of driver being used for the device. For example, XOS
supports both the standard AT type floppy controller and the
Compati-Card floppy controller. The value of this characteristic indicates
which is being used for a specific floppy drive. This characteristic is not
always required since in most cases there is a generally used default de-
vice type.

UNIT - Unit number

This add-unit characteristic does not directly correspond to a device char-
acteristic. It is used to specify the unit number for the device unit being
added to the class specified for the CF_ADDUNIT sub-function. It is re-
quired for all devices. Most device classes require that each device added
to the class have a unique unit number, although some (such as the DISK
class) create several naming spaces within the class and only require that
the unit number be unique with the naming space. There is no requirement
that unit numbers be contiguous or be assigned in any specific order.
Many device classess restrict unit numbers to a value of 99 or less. Some
device classes do not allow a unit number of 0 or reserve it for a special
purpose.

The name of the device is generally created by prefixing the decimal rep-
resentation of the unit number with the device name associated with the
device class. This is often, but not necessarily the name of the class. A
class is free to use any prefix or prefixes for the device name. For exam-
ple, the DISK class uses F for floppy disks, D for IDE disks and S for
SCSI disks. Nothing in XOS enforces this format however. A class driver
can form a device name in any way, although it must ensure that the name
is unique in the system.

Add-Unit Characteristics - Chapter 14

295

DISK Add-Unit Characteristics

Due to the major differences in the architectures of the supported disk controllers,
there are no additional common add-unit characteristics for disk class devices.

HDKA Type Disk Devices (PC-AT Hard Disk)

This section describes the add-unit characteristics which are specific to the HDKA
type disk device driver. This device supports the standard PC-AT hard disk control-
ler. This includes the original ST-501 controller, ESDI controllers, and IDE control-
lers. It does not include the PS-2 disk controllers or most SCSI controllers. SCSI
controllers which fully emulate the PC-AT hard disk controller registers in hardware
can be used, but none of the extra features of these controllers are supported by this
device driver.

Table 14.2 summarizes the HDKA type specific add-unit characteristics.

Table 14.2 - Add-unit characteristics for HDKA type disks
Name Req Format Size Description

ICYLNS * DECV 4 Number of cylinders
IHEADS * DECV 4 Number of heads
INDEX Y DECV 1 Index on controller
INT Y DECV 1 Interrupt number
IOREG Y HEXV 2 Base IO register
ISECTS * DECV 4 Number of sectors
TYPE Y TEXT 4 Device type = HDKA
UNIT Y DECV 1 Unit number
WPCCYLN DECV 4 Wriate pre-comp cylinder

The unique hard disk add-unit characteristics are described in detail below.

ICYLNS - Number of cylinders

This characteristic specifies the number of cylinders on the drive. This
value is only used for disks with do not support the identify drive com-
mand. It is required for these disks unless there is a CMOS data entry de-
scribing the drive. The value must be numeric.

XOS Programmer's Guide
DISK Add-Unit Characteristics

296

IHEADS - Number of heads

This characteristic specifies the number of heads on the drive. This value
is only used for disks with do not support the identify drive command. It is
required for these disks unless there is a CMOS data entry describing the
drive. The value must be numeric.

ISECTS - Number of sectors

This characteristic specifies the number of sectors in each track on the
drive. This value is only used for disks with do not support the identify
drive command. It is required for these disks unless there is a CMOS data
entry describing the drive. The value must be numeric.

WPCCYLN - Write pre-comp cylinder

This characteristic specifies the cylinder at which write pre-compensation
begins. This value is ignored by almost all modern disk drives. It is re-
quired by a few very old drives for proper operation. If this characteristic
is not specified and there is a CMOS data entry describing the drive the
CMOS value will be used, thus there should very seldom be a need to use
this characteristic. The value must be numeric.

Add-Unit Characteristics - Chapter 14
DISK Add-Unit Characteristics

297

SDSK Type Disk Devices (SCSI Controllers)

This section describes the add-unit characteristics which are specific to the SDSK
type disk device driver. This device supports all disks which are connected to the
system using a SCSI interface.

Table 14.3 summarizes the SDSK type disk add-unit characteristics.

Table 14.3 - Add-unit characteristics for SDSK type disks
Name Req Format Size Description

DOINQ TEXT 4 Do inquiry function
SCSIDEV Y TEXT 16 SCSI device
SCSILUN DECV 1 SCSI logical unit number
SCSITAR Y DECV 1 SCSI target ID
TYPE Y TEXT 4 Device type = SDSK
UNIT Y DECV 2 Unit number

DOINQ - Do inquiry function

This characteristic specifies if a SCSI inquiry function should be done to
the drive to obtain its parameters. The default value is Y (Yes). This is cor-
rect for almost all SCSI disks. A few cases have been observed where a
non-complient disk did not respond properly to an inquiry function and
this characteristic has been included to handle this unusual case. The value
must be text and should have a value of Y, YES, N, or NO.

SCSIDEV - SCSI device

This characteristic specifies the name of the scsi controller device for the
disk. This will have the format SCSIn where n is the unit number of the
SCSI controller device. The SCSI controller device must be added before
the disk unit is added.

SCSILUN - SCSI logical unit number

This characteristic specifies the SCSI logical unit number for the disk.
This characteristic is optional and has a default value of 0. The value must
be numeric between 0 and 15 (0 and 7 for many SCSI controllers).

SCSITAR - SCSI target ID

This characteristic specifies the SCSI target number for the disk. The
value must be numeric between 0 and 14 (0 and 6 for many SCSI control-
lers).

XOS Programmer's Guide
DISK Add-Unit Characteristics

298

FDKA Type Disk Devices (Floppy Disk)

This section describes the add-unit characteristics for the FDKA type disk device.
This device supports the standard PC-AT floppy disk controller (NEC 765/Intel
8272) and the CompatiCard-I add-in floppy disk controller made by Micro Solu-
tions, Inc. This controller uses the same chip as the standard PC-AT controller but
provides slightly more flexibility in supporting non-standard floppy types, espe-
cially 8" floppies.

The floppy disk geometery is not specified when adding a unit. It is determined au-
tomatically when a disk is mounted or can be specified explicitly with device char-
acteristics.

Table 14.4 summarizes the floppy disk add-unit characteristics.

Table 14.4 - Device characteristics for floppy disks
Name Req Format Size Description

CONDESP TEXT 4 Controller description
INDEX Y TEXT 8 Index on controller
IOREG Y DECV 2 Base IO register
TYPE Y DECV 2 Unit type = FKDA
UNIT Y DECV 1 Unit number
UNITTYPE Y TEXT 4 Unit type

The floppy disk add-unit characteristics are described in detail below.

CONDESP - Controller description

This characteristic specifies the type of floppy controller. Valid values are
PCAT (standard PC/AT floppy controller) or CMPT (CompatiCard floppy
controller). The default value is PCAT. The value must be text.

UNITTYPE - Unit type

This characteristic specifies the type of a floppy disk unit. While this value
can be changed at any time using a device characteristic, it is settable here
to ensure that the incorrect disk type will not be used when initially ac-
cessing the disk. If this characteristic is not specified, the CMOS value (if
there is one) is used. If there is not CMOS value, HD5 is assumed. Valid
values are:

Add-Unit Characteristics - Chapter 14
DISK Add-Unit Characteristics

299

Value Meaning
HD3 3.5” high density
DD3 3.5" double density
HD5 5.25" high density
DD5 5.25" double density
DD8 8" double density

The value must be text with a length of at least 4 bytes.

XOS Programmer's Guide
DISK Add-Unit Characteristics

300

SPL Add-Unit Characteristics

Other than the universally required UNIT characteristic there are not add-unit char-
acteristics for SPL class devices. These devices are configured using device charac-
teristics after the unit has been added.

Add-Unit Characteristics - Chapter 14
SPL Add-Unit Characteristics

301

TAPE Add-Unit Characteristics

Currently XOS only supports SCSI tape controllers. Additional types of controllers
will probably be supported in future versions. The TAPE class driver is structured to
support multiple low lever device drivers like the disk class driver.

STAP Type Tape Devices (SCSI Controllers)

This section describes the add-unit characteristics which are specific to the STAP
type tape device driver. This device supports all tape drives which are connected to
the system using a SCSI interface.

Table 14.5 summarizes the SDSK type disk add-unit characteristics.

Table 14.5 - Add-unit characteristics for STAP type tape drives
Name Req Format Size Description

SCSIDEV Y TEXT 16 SCSI device
SCSILUN DECV 1 SCSI logical unit number
SCSITAR Y DECV 1 SCSI target ID
TYPE Y TEXT 4 Device type = SDSK
UNIT Y DECV 2 Unit number

SCSIDEV - SCSI device

This characteristic specifies the name of the scsi controller device for the
tape drive. This will have the format SCSIn where n is the unit number of
the SCSI controller device. The SCSI controller device must be added be-
fore the tape unit is added.

SCSILUN - SCSI logical unit number

This characteristic specifies the SCSI logical unit number for the tape
drive. This characteristic is optional and has a default value of 0. The
value must be numeric between 0 and 15 (0 and 7 for many SCSI control-
lers).

XOS Programmer's Guide
TAPE Add-Unit Characteristics

302

SCSITAR - SCSI target ID

This characteristic specifies the SCSI target number for the tape drive. The
value must be numeric between 0 and 14 (0 and 6 for many SCSI control-
lers).

Add-Unit Characteristics - Chapter 14
TAPE Add-Unit Characteristics

303

TRM Add-Unit Characteristics

The add-unit characteristics for the TRM class devices are different for each of the
different types of low level devices supported. The section describes the add-unit
characteristics for serial port SERA, serial port SERB/SERC, serial port SERD, and
console (VGAA) devices. There are no add-unit characteistics for the
psuedo-console and telnet terminal devices since these devices do not use the
add-unit function.

XOS Programmer's Guide
TRM Add-Unit Characteristics

304

TRM (Serial Port) Devices

XOS supports 4 different serial interface boards, each of which have somewhat dif-
ferent add-unit characterists. Each is listed seperately below.

All TRM class devices have names of the format TRMn regardless of the type of the
low level device driver for the port. Thus the unit number for a TRM unit must be
unique across all TRM unit types.

TRM (SERA) Devices

The SERA type serial device driver supports the standard PC architecture COM
ports using the 16450/16550 and compatable chips.

Table 14.5 summarizes the TRM class serial port device characteristics.

Table 14.5 - Add-unit characteristics for TRM class serial ports
Name Fnc Format Size Description

INLBS DECV 4 Input line buffer size
INRBS DECV 4 Input ring buffer size
INT Y DECV 1 Interrupt number
INTRS DECV 4 Interrupt level ring size
IOREG Y HEXV 4 Base IO register number
OUTRBS DECV 4 Output ring buffer size
TYPE Y TEXT 8 Device type = SERA
UNIT Y DECV 2 Unit number

The following section describes the characteristics for TRM class SERA serial port
devices in detail.

INLBS - Input line buffer size

This characteristic specifies the size of the input line buffer. The size of
this buffer determines the maximum length line that can be input in line
mode. If the chracteristic is not specified a value of 120 is used. This value
is adequate for most cases. The value must be numeric.

Add-Unit Characteristics - Chapter 14
TRM Add-Unit Characteristics

305

INRBS - Input ring buffer size

This characteristic specifies the size of the input ring buffer for the serial
port. This buffer is mainly used to hold typeahead input when in line
mode. If the chracteristic is not specified a value of 120 is used. This value
is adequate for most cases. The value must be numeric.

INTRBS - Interrupt ring buffer size

This characteristic specifies the size of the interrupt ring buffer for the se-
rial port. This buffer is buffers all input until it can be processed. If the
chracteristic is not specified a value of 100 is used. This value is adequate
for most cases when the port is used to support an interactive terminal. If it
is used for high speed data input, a larger value will probably be needed
(depending on data rate and processor speed) to prevent data loss. The
value must be numeric.

OUTRBS - Output ring buffer size

This characteristic specifies the size of the output ring buffer for the serial
port. This buffer is used to internally buffer output to minimize process
scheduling overhead when doing output. If the chracteristic is not speci-
fied a value of 100 is used. This value is adequate for for most cases. If
heavy output is expected, it should be increased, especially if it is impor-
tant that there be no pauses between output chracters The value must be
numeric.

XOS Programmer's Guide
TRM Add-Unit Characteristics

306

TRM (SERB, SERC) Devices

The SERB type serial device driver supports the DigiBoard multiport serial boards
and the SERC type serial device driver support the Gtek multiport serial boards.
These drivers are very similar and have the same add-unit characteristics. A TRM
unit must be added for each port on a multiport board. The STSREG value identifies
the board, since it is the one common register on each board. The INT value is also
common to all ports on the board. It must be specified for the first unit added. It is
optional for additional units on the same board, but if specified it must be the same
as for the first unit. The IOREG value must match the value which the specified
PORT is strapped for. Note that when 2 or 4 8-port DigiBoards are connected inter-
nally, the result appears to the system as a single board, with single STSREG and
INT values.

Table 14.6 summarizes the TRM class serial port device characteristics.

Table 14.6 - Add-unit characteristics for TRM class SERB and SERC
serial ports

Name Fnc Format Size Description
INLBS DECV 4 Input line buffer size
INRBS DECV 4 Input ring buffer size
INT Y DECV 1 Interrupt number
INTRS DECV 4 Interrupt level ring size
IOREG Y HEXV 4 Base IO register number
OUTRBS DECV 4 Output ring buffer size
PORT Y DECV 1 Port on board
STSREG Y TEXT 4 Status register number
TYPE Y TEXT 8 Device type = SERB or SERD
UNIT Y DECV 2 Unit number

The following section describes the characteristics for TRM class SERB and SERC
serial port devices in detail.

INLBS - Input line buffer size

This characteristic specifies the size of the input line buffer. The size of
this buffer determines the maximum length line that can be input in line
mode. If the chracteristic is not specified a value of 120 is used. This value
is adequate for most cases. The value must be numeric.

Add-Unit Characteristics - Chapter 14
TRM Add-Unit Characteristics

307

INRBS - Input ring buffer size

This characteristic specifies the size of the input ring buffer for the serial
port. This buffer is mainly used to hold typeahead input when in line
mode. If the chracteristic is not specified a value of 120 is used. This value
is adequate for most cases. The value must be numeric.

INTRBS - Interrupt ring buffer size

This characteristic specifies the size of the interrupt ring buffer for the se-
rial port. This buffer is buffers all input until it can be processed. If the
chracteristic is not specified a value of 100 is used. This value is adequate
for most cases when the port is used to support an interactive terminal. If it
is used for high speed data input, a larger value will probably be needed
(depending on data rate and processor speed) to prevent data loss. The
value must be numeric.

OUTRBS - Output ring buffer size

This characteristic specifies the size of the output ring buffer for the serial
port. This buffer is used to internally buffer output to minimize process
scheduling overhead when doing output. If the chracteristic is not speci-
fied a value of 100 is used. This value is adequate for for most cases. If
heavy output is expected, it should be increased, especially if it is impor-
tant that there be no pauses between output chracters The value must be
numeric.

PORT - Port on board

This characteristic specifies the port on the board. The first port is 1, the
second 2, etc. The value must be numeric and must be less than or equal to
the number of ports on the board.

STSREG - Status I/O register number (SERB only)

This characteristic specifies the I/O register number of the board’s status
register. Each board has a single status register, regardless of the number
of ports which it supports. The number of this status register is used by the
system to identify the board (as opposed to the individual ports). The
value must be numeric.

XOS Programmer's Guide
TRM Add-Unit Characteristics

308

TRM (SERD) Devices

The SERD type serial device driver supports the RocketPort multiport serial inter-
face boards. These boards are available in 8, 16, and 32 port versions.

Each board uses 2 or more seperate blocks of IO registers. All boards use a block of
4 board registers which an be assigned at any base address which is evenly divisable
by 64 (0x40) and is 0xFC0 or less (BRDREG value). 8-port boards also use a single
block of 64 registers which can also be assigned at any base address which is evenly
divisable by 64 and is 0xFC0 or less (IOREG value). 16-port boards use two blocks
of 64 registers. The first block can be assigned at any base address which is evenly
divisable by 64 and is 0x7C0 or less (IOREG value). The second block of 64 regis-
ters is located at the address of the first block plus 0x400. 32-port boards use four
blocks of 64 registers each. The first block can be assigned at any base address
which is evenly divisable by 64 and is 0x3C0 or less (IOREG value). The second
block of 64 registers is located at the address of first block plus 0x400, the third at
the address of the first plus 0x800 and the fourth at the address of the first plus
0xC00.

Note that the above address limits are based on the number of ports initialized on a
board, NOT on the physical size of the board.

All devices on a board must be specified with the same interrupt number, IO register
address and board register address. The port number must be different for each port
on a board and must be between 1 and 8 inclusive for an 8-port board, 1 and 16 inclu-
sive for a 16-port board, and 1 and 32 inclusive for a 32 board board. Not all ports on
a board need to be initialized and they can be initialized in any order.

Table 14.7 summarizes the TRM class SERD serial port device characteristics.

Table 14.7 - Add-unit characteristics for TRM class SERD serial ports
Name Fnc Format Size Description

BRDREG Y HEXV 4 Board register number
INLBS DECV 4 Input line buffer size
INRBS DECV 4 Input ring buffer size
INT Y DECV 1 Interrupt number
INTRS DECV 4 Interrupt level ring size
IOREG Y HEXV 4 Base IO register number
OUTRBS DECV 4 Output ring buffer size
PORT Y DECV 1 Port on board
TYPE Y TEXT 8 Device type = SERD

Add-Unit Characteristics - Chapter 14
TRM Add-Unit Characteristics

309

Table 14.7 - Add-unit characteristics for TRM class SERD serial ports
Name Fnc Format Size Description

UNIT Y DECV 2 Unit number

The following section describes the characteristics for TRM class SERA serial port
devices in detail.

BRDREG - Board register number

This characteristic specifies the register number for the board register
which is described above. The value must be numeric.

INLBS - Input line buffer size

This characteristic specifies the size of the input line buffer. The size of
this buffer determines the maximum length line that can be input in line
mode. If the chracteristic is not specified a value of 120 is used. This value
is adequate for most cases. The value must be numeric.

INRBS - Input ring buffer size

This characteristic specifies the size of the input ring buffer for the serial
port. This buffer is mainly used to hold typeahead input when in line
mode. If the chracteristic is not specified a value of 120 is used. This value
is adequate for most cases. The value must be numeric.

INTRBS - Interrupt ring buffer size

This characteristic specifies the size of the interrupt ring buffer for the se-
rial port. This buffer is buffers all input until it can be processed. If the
chracteristic is not specified a value of 100 is used. This value is adequate
for most cases when the port is used to support an interactive terminal. If it
is used for high speed data input, a larger value may be needed (depending
on data rate and processor speed) to prevent data loss. It should be remem-
bered however, that the RocketPort provides a 1024 character input FIFO
for each port. This usually eliminates the need for extra buffering in the
system. The value must be numeric.

OUTRBS - Output ring buffer size

This characteristic specifies the size of the output ring buffer for the serial
port. This buffer is used to internally buffer output to minimize process
scheduling overhead when doing output. If the chracteristic is not speci-
fied a value of 100 is used. This value is adequate for for most cases. If
heavy output is expected, it should be increased, especially if it is impor-
tant that there be no pauses between output chracters It should be remem-

XOS Programmer's Guide
TRM Add-Unit Characteristics

310

bered however, that the RocketPort provides a 256 character output FIFO
for each port. This usually eliminates the need for extra buffering in the
system The value must be numeric.

PORT - Port on board

This characteristic specifies the port on the board. The first port is 1, the
second 2, etc. The value must be numeric and must be less than or equal to
the number of ports on the board.

Add-Unit Characteristics - Chapter 14
TRM Add-Unit Characteristics

311

TRM (Console) Devices

This section describes the add-unit characteristics which are specific to TRM class
console devices. Console devices are somewhat unusual in that they use two sepa-
rate low level drivers, one for the display interface and one for the keyboard inter-
face. The current of XOS only supports the VGA console display device (type is
VGAA) and the standard PC/AT keyboard interface (type is KBDA).

Table 14.8 summarizes the TRM class console add-unit characteristics.

Table 14.8 - Add-unit characteristics for TRM class
VGAA/KBDA consoles

Name Req Format Size Description
INLBS DECV 4 Keyboard input line buffer size
INRBS DECV 4 Keyboard input line buffer size
IOREG Y TEXT 4 Display base IO register number
KBINT Y DECV 4 Keyboard interrupt number
KBIOREG Y DECV 4 Keyboard base IO register number
KBTYPE Y TEXT 4 Keyboard unit type = KBDA
SCREEN Y STR 12 Display virtual screen number
TYPE Y STR 4 Display unit type = VGAA
UNIT Y TEXT 4 Unit number

The following section describes the dadd-unit characteristics for TRM class console
devices in detail.

INLBS - Keyboard input line buffer size

This characteristic specifies the size of the keyboard input line buffer. The
size of this buffer determines the maximum length line that can be input in
line mode. If the chracteristic is not specified a value of 120 is used. This
value is adequate for most cases. The value must be numeric.

INRBS - Keyboard input ring buffer size

This characteristic specifies the size of the keyboard input ring buffer for
the serial port. This buffer is mainly used to hold typeahead input when in
line mode. If the chracteristic is not specified a value of 120 is used. This
value is adequate for most cases. The value must be numeric.

XOS Programmer's Guide
TRM Add-Unit Characteristics

312

KBINT - Keyboard interrupt number

This characteristic specifies the keyboard interrupt number. It must be
specified if this is the first virutal screen being defined. If it is not the first
virtual screen this characteristic is optional, but if specified it must be the
same as previously specified for the console. The value must be numeric.

KBIOREG - Keyboard base IO register number

This characteristic specifies the keyboard base IO register number.. It must
be specified if this is the first virutal screen being defined. If it is not the
first virtual screen this characteristic is optional, but if specified it must be
the same as previously specified for the console. The value must be
numeric.

KBTYPE - Keyboard device type

This characteristic specifies the unit type for the keyboard interface de-
vice. It must be specified if this is the first virutal screen being defined. If
it is not the first virtual screen this characteristic is optional, but if speci-
fied it must be the same as previously specified for the console. Currently,
the only valid value is KBDA. The value must be text.

SCREEN - Virtual screen number

This characteristic specifies the virtual screen number for the virtual
screen being added. Virtual screens must be added in order, starting with
virtual screen 1 and incrementing by 1 for each virtual screen added. The
maximum virtual screen number is 32. The value must be numeric.

Add-Unit Characteristics - Chapter 14
TRM Add-Unit Characteristics

313

TRM (Pseudo-Console) Devices

There are no add-unit parameters associated with the client-side pseudo-console de-
vices. These devices are created dynamically by the associated server-side
pseudo-console device rather than by means of the CF_ADDUNIT sub-function.

XOS Programmer's Guide
TRM Add-Unit Characteristics

314

TRM (Telnet) Devices

There are no add-unit parameters associated with the client-side Telnet devices.
These devices are created dynamically by the associated server-side Telnet device
rather than by means of the CF_ADDUNIT sub-function.

Add-Unit Characteristics - Chapter 14
TRM Add-Unit Characteristics

315

PCN Add-Unit Characteristics

Other than the universally required UNIT characteristic there are not add-unit char-
acteristics for PCN class devices. These devices are configured using device charac-
teristics after the unit has been added.

XOS Programmer's Guide
PCN Add-Unit Characteristics

316

IPM Add-Unit Characteristics

The IPM device does not use the CF_ADDUNIT function so there are no add-unit
characteristics associated with this device.

Add-Unit Characteristics - Chapter 14
IPM Add-Unit Characteristics

317

NULL Add-Unit Characteristics

The NULL device does not use the CF_ADDUNIT function so there are no add-unit
characteristics associated with this device.

XOS Programmer's Guide
NULL Add-Unit Characteristics

318

PPR Add-Unit Characteristics

PPR class devices use no unique add-unit characteristics. Only the INT, IOREG, and
UNIT characteristics are used. All are required.

Add-Unit Characteristics - Chapter 14
PPR Add-Unit Characteristics

319

NET Add-Unit Characteristics

XOS supports two different network interface boards, each of which have slightly
different add-unit characterists. Each is listed seperately below.

All NET class devices have names of the format NETn regardless of the type of the
low level device driver for the interface. Thus the unit number for a NET unit must
be unique across all NET unit types.

NET (EWDA) Devices

The EWDA type network device driver supports varieties of Western Digital/SMC
Ethernet interface boards.

Table 14.9 summarizes the NET class EWDA add-unit characteristics.

Table 14.9 - Add-unit characteristics for NET class EWDA devices
Name Fnc Format Size Description

INT Y DECV 1 Interrupt number
IOREG Y HEXV 4 Base IO register number
MEM Y HEXV 4 Memory address
TYPE Y TEXT 8 Device type = EWDA
UNIT Y DECV 2 Unit number

These are all common add-unit characteristics which have been described previ-
ously. It should be noted that the MEM value must be in the range of 0xC0000 to
0xF0000 minus the amount of buffer memory on the card (8KB or 16KB). This
value is NOT specified by the hardware set up, even though many WD/SMC
compatable cards which use “soft” set up allow you to specify this address. The
value associated with the hardware is not used. Thus the value of the MEM charac-
teristic can specify any allowed address, independent of the card’s configuration. Of
course, it must not conflict with other devices in the system.

XOS Programmer's Guide
NET Add-Unit Characteristics

320

NET (ENEA) Devices

The ENEA type network device driver supports the Novell NE1000/NE2000 and
compatable Ethernet interface boards.

Table 14.10 summarizes the NET class ENEA add-unit characteristics.

Table 14.10 - Add-unit characteristics for NET class ENEA devices
Name Fnc Format Size Description

INT Y DECV 1 Interrupt number
IOREG Y HEXV 4 Base IO register number
TYPE Y TEXT 8 Device type = EWDA
UNIT Y DECV 2 Unit number

These are all common add-unit characteristics which have been described previ-
ously.

Add-Unit Characteristics - Chapter 14
NET Add-Unit Characteristics

321

SNAP Add-Unit Characteristics

This section describes the add-unit characteristics for SNAP class devices. SNAP
class devices provide access to the link control level for the Internet protocol stack
using the SNAP or Bluebook link level protocols. These characteristics are summa-
rized in Table 14.11.

Table 14.11 - Add-unit Characteristics for SNAP Class Devices
Name Req Format Size Description

NETDEV Y TEXT 16 Name of associated network device
UNIT Y DECV 4 Unit number

Most of the set up for the SNAP device is done using device characteristics after the
unit is added. The only thing that must be specified when the device is added is the
name of the network device (NET) that the SNAP device will be associated with.
This name should always be of the format NETn, where n is a the unit number for the
network device. Note that there is no requirement that the SNAP and NET devices
have the same unit number, however, it is stongly recommended that they be the
same to prevent confusion. Of course, this is not possible if more than one SNAP de-
vice is associated with the same NET device. This would be done to support multile
link level protocols.

XOS Programmer's Guide
SNAP Add-Unit Characteristics

322

ARP Add-Unit Characteristics

This section describes the device characteristics for ARP class devices. This device
provides access to the ARP protocol level in the Internet protocol stack. These char-
acteristics are summarized in Table 14.12.

Table 14.12 - Add-unit Characteristics for ARP Class Devices
Name Req Format Size Description

SNAPDEV Y TEXT 16 Name of associated SNAP device
UNIT Y DECV 4 Unit number

Most of the set up for the ARP device is done using device characteristics after the
unit is added. The only thing that must be specified when the device is added is the
name of the SNAP device that the ARP device will be associated with. This name
should always be of the format SNAPn, where n is a the unit number for the network
device. Note that there is no requirement that the ARP and SNAP devices have the
same unit number, however, it is stongly recommended that they be the same to pre-
vent confusion. Of course, this is not possible if more than one ARP device is associ-
ated with the same SNAP device. While this is unlikely, it is possible.

Add-Unit Characteristics - Chapter 14
ARP Add-Unit Characteristics

323

IPS Add-Unit Characteristics

This section describes the add-unit characteristics for IPS class devices. The IPS de-
vices are the lowest level network protocol devices which provide access to the IP
level of the Internet Protocol Suite. These characteristics are summarized in Table
14.13.

Table 14.13 - Add-unit Characteristics for SNAP Class Devices
Name Req Format Size Description

SNAPDEV Y TEXT 16 Name of associated SNAP device
UNIT Y DECV 4 Unit number

Most of the set up for the IPS device is done using device characteristics after the
unit is added. The only thing that must be specified when the device is added is the
name of the SNAP device what the IPS device will be associated with. This name
should always be of the format SNAPn, where n is a the unit number for the network
device. Note that there is no requirement that the IPS and SNAP devices have the
same unit number, however, it is stongly recommended that they be the same to pre-
vent confusion. Of course, this is not possible if more than one IPS device is associ-
ated with the same SNAP device. This is unlikely, but possible.

XOS Programmer's Guide
IPS Add-Unit Characteristics

324

UDP Add-Unit Characteristics

This section describes the add-unit characteristics for UDP class devices. The UDP
devices provide access to the UDP protocol. These devices are commonly used to
send and receive datagrams. These characteristics are summarized in Table 14.14.

Table 14.14 - Add-unit Characteristics for UDP Class Devices
Name Req Format Size Description

IPSDEV Y TEXT 16 Name of associated IPS device
UNIT Y DECV 4 Unit number

Most of the set up for the UDP device is done using device characteristics after the
unit is added. The only thing that must be specified when the device is added is the
name of the IPS device that the UDP device will be associated with. This name
should always be of the format IPSn, where n is a the unit number for the network
device. Note that there is no requirement that the UDP and IPS devices have the
same unit number, however, it is stongly recommended that they be the same to pre-
vent confusion. Of course, this is not possible if more than one UDP device is associ-
ated with the same IPS device. This is unlikely, but possible.

Add-Unit Characteristics - Chapter 14
UDP Add-Unit Characteristics

325

TCP Add-Unit Characteristics

This section describes the add-unit characteristics for TCP class devices. The TCP
devices provide access to the TCP protocol. These devices are used by programs
(such as servers) which need to directly access TCP virtual connections. These char-
acteristics are summarized in Table 14.15.

Table 14.15 - Add-unit Characteristics for UDP Class Devices
Name Req Format Size Description

IPSDEV Y TEXT 16 Name of associated IPS device
UNIT Y DECV 4 Unit number

Most of the set up for the TCP device is done using device characteristics after the
unit is added. The only thing that must be specified when the device is added is the
name of the IPS device that the TCP device will be associated with. This name
should always be of the format IPSn, where n is a the unit number for the network
device. Note that there is no requirement that the TCP and IPS devices have the
same unit number, however, it is stongly recommended that they be the same to pre-
vent confusion. Of course, this is not possible if more than one TCP device is associ-
ated with the same IPS device. This is unlikely, but possible.

XOS Programmer's Guide
TCP Add-Unit Characteristics

326

TLN Add-Unit Characteristics

This section describes the add-unit characteristics for TLN class devices. The TLN
device implements a basic Telnet server as part of the XOS kernel. It actually con-
sists of a pair of devices: the TLN device and the corresponding TRM class device
which provides the functionality of a serial port TRM device. These characteristics
are summarized in Table 14.16.

Table 14.16 - Add-unit Characteristics for TLN Class Devices
Name Req Format Size Description

PORT DECV 4 TCP port for connections
TCPDEV Y TEXT 16 Name of associated TCP device
UNIT Y DECV 4 Unit number

Most of the set up for the TLN device is done using device characteristics after the
unit is added. The following add-unit characteristics are used.

PORT - TCP port for connections

This characteristic specifies the TCP port used to listen for in-coming con-
nections. If it is not specified, the standard Telnet port, 23 is used. The
value must be numeric.

TCPDEV - Name of associated TCP device

This characteristic specifies the name of the TCP device that the TLN de-
vice will be associated with. This name should always be of the format
TCPn, where n is a the unit number for the network device. Note that there
is no requirement that the TLN and TCP devices have the same unit num-
ber, however, it is stongly recommended that they be the same to prevent
confusion. Of course, this is not possible if more than one TLN device is
associated with the same TCP device. This is unlikely, but possible.

Add-Unit Characteristics - Chapter 14
TLN Add-Unit Characteristics

327

RCP Add-Unit Characteristics

This section describes the add-unit characteristics for RCP class devices. The RCP
devices provide access to the RCP protocol. These devices are used by programs
(such as servers) which need to directly access RCP virtual connections. These char-
acteristics are summarized in Table 14.17.

Table 14.17 - Add-unit Characteristics for RDP Class Devices
Name Req Format Size Description

UDPDEV Y TEXT 16 Name of associated UDP device
UNIT Y DECV 4 Unit number

Most of the set up for the RCP device is done using device characteristics after the
unit is added. The only thing that must be specified when the device is added is the
name of the UDP device that the RCP device will be associated with. This name
should always be of the format UDPn, where n is a the unit number for the network
device. Note that there is no requirement that the RCP and UDP devices have the
same unit number, however, it is stongly recommended that they be the same to pre-
vent confusion. Of course, this is not possible if more than one RCP device is associ-
ated with the same UDP device. This is unlikely, but possible.

XOS Programmer's Guide
RCP Add-Unit Characteristics

328

XFP Add-Unit Characteristics

This section describes the add-unit characteristics for XFP class devices. The XFP
devices implement a client for the XFP protocol. These devices are used to provide
remote file access. These characteristics are summarized in Table 14.18.

Table 14.18 - Add-unit Characteristics for XFP Class Devices
Name Req Format Size Description

RCPDEV Y TEXT 16 Name of associated RCP device
UNIT Y DECV 4 Unit number

Most of the set up for the XFP device is done using device characteristics after the
unit is added. The only thing that must be specified when the device is added is the
name of the RCP device that the XFP device will be associated with. This name
should always be of the format RCPn, where n is a the unit number for the network
device. Note that there is no requirement that the XFP and RCP devices have the
same unit number, however, it is stongly recommended that they be the same to pre-
vent confusion. Of course, this is not possible if more than one XFP device is associ-
ated with the same RCP device. This is unlikely, but possible.

Add-Unit Characteristics - Chapter 14
XFP Add-Unit Characteristics

329

Chapter 15

svcIoQueue System Call

This chapter describes the svcIoQueue system call. This is the only XOS system call
given its own chapter in this manual. This is by far the most complex system call. It
implements virtually the entire XOS I/O interface. All major I/O functions eventu-
ally execute this system call. Most of the system calls that appear at first glance to be
a rich set of other I/O system calls are in reality calls to user mode routines which set
up arguments for the svcIoQueue call and then execute it. These routines are pro-
vided as a convenience when requesting simple operations, since setting up the ar-
gument block for the svcIoQueue call is more complex than pushing a couple of
arguments onto the stack. Also, these user mode calls are more compatible with the
DOS and Unix style APIs, making program conversion easier.

The svcIoQueue system call queues a request for an I/O operation.

CALLING SEQUENCE:

XOSSVC svcIoQueue(struct qab far *qab);

VALUE RETURNED:

The value returned is 0 unless an error occurred while queuing the request,
in which case a negative error code is returned. Note that any errors which
occur after the request is queued, which includes most errors associated
with an I/O operation, are not indicated by the value returned by this call.
Such errors cause a non-zero error code to be stored in the qab_error field
in the QAB (see below). When the svcIoQueue call returns 0, several
QAB fields are always filled to indicate the further progress of the I/O op-
eration.

svcIoQueue System Call - Chapter 15

331

QAB Format

The svcIoQueue system call uses a single format argument (called a queued argu-
ment block or QAB) for all functions. The format of the QAB is summarized in Ta-
ble 15.1.

Figure 15.1 - QAB Format
Name Offset Size Description
qab_func 0 2 Function
qab_status 2 2 Returned status
qab_error 4 4 Returned error code
qab_amount 8 4 Returned amount
qab_handle 12 4 Device handle
qab_vector 16 1 Signal vector number

17 3 Not used
qab_option 20 4 Option or command
qab_count 24 4 Count
qab_buffer1 28 8 Address of buffer 1
qab_buffer2 36 8 Address of buffer 2
qab_parmlist 44 8 Address of I/O parameter list

When the svcIoQueue system call is issued, all values set by the user, except for
qab_vector, are copied to an internal system buffer; thus none of these values can be
changed after the system call returns. These fields are explained in detail below.

qab_func - Function

This field specifies the I/O function to be queued by the svcIoQueue sys-
tem call. Values for this field are summarized in Tables 15.3 and 15.4 and
are described in detail in the following section. This field is 2 bytes long
and must be filled in by the user before issuing the svcIoQueue call.

qab_status - Returned status

This field receives the status of the operation performed by the
svcIoQueue call. After a blocking call, this field will always have the
QSTS$DONE bit set. After a non-blocking call, this field can be polled to
monitor the status of the I/O operation. The bits in this field are defined in
Table 15.2. This field is 2 bytes long and is filled in by the system when
the svcIoQueue call is issued.

XOS Programmer's Guide
QAB Format

332

Table 15.2 - Values for qab_status
Bit Name Meaning
15 QSTS$DONE Operation is complete
14 QSTS$ACTIVE Operation is active
13 QSTS$WAIT Need to wait (internal use only)
12 QSTS$REDO Need to re-do (internal use only)
2 QSTSCANCEL Operation canceled before started
1 QSTS$ABORT Operation aborted while in progress
0 QSTS$TRUNC Data truncated

The QSTS$ACTIVE bit is set when the operation is started and cleared
when it is completed, at the same time the QSTS$DONE bit is set. The
QSTS$WAIT and QSTS$REDO bits are used internally for scheduling
and should be ignored by the user. The QSTS$CANCEL or
QSTS$ABORT bit is set (one only) if the operation is terminated as a re-
sult of a svcIoCancel system call or as a result of process termination (al-
though in this case it is generally not visible). The QSTS$TRUNC bit is
set if not as much data was transferred as was requested due to an abnor-
mal condition. This field will always be set for all svcIoQueue functions if
the svcIoQueue returned a value of 0.

qab_error - Returned error code

This field receives an error code when the operation is complete. The error
code is stored at the same time the QSTS$DONE bit is set. If the operation
completed without any errors (other than truncation), a value of 0 is stored
in this field. If there was an error, a negative error code is stored here. This
field will always be set for all svcIoQueue functions if the svcIoQueue re-
turned a value of 0.

qab_amount - Returned amount

This field receives the total amount transferred by the I/O operation. For
data transfers, this will be the number of bytes transferred. For other func-
tions (such as QFNC_OPEN, QFNC_DELETE, etc.), it is the number of
items processed. This field is set to zero when the operation is started and
may be updated incrementally as the operation progresses. In all cases, the
final value will have been stored when the QSTS$DONE bit is set. This
field will always be set for all svcIoQueue functions if the svcIoQueue re-
turned a value of 0.

svcIoQueue System Call - Chapter 15
QAB Format

333

qab_handle - Device handle

This field contains the device handle for the I/O operation. This is the only
QAB field which is stored by either the user or the system, depending on
the function being performed. For the QFNC_OPEN function, the system
stores the handle opened in this field (unless the O$FORCEH bit is set in
qab_option). For all other functions, this field is either set by the user or is
not used.

qab_vector - Signal vector number

This field specifies the signal vector number on which a signal is re-
quested when the operation is complete. A value of 0 indicates that no sig-
nal is to be requested. This is the only QAB field that can be changed once
the operation has started. This allows starting an operation which may fin-
ish quickly without a signal request and then setting a request once it is de-
termined that the operation did not finish after some short period of time,
thus often eliminating the overhead of an unnecessary signal.

qab_option - Option or command

This field specifies a value which modifies the function being performed.
The format of this value depends on the function. It is described below
with the descriptions of the individual functions. This field is set by the
user and is 4 bytes long.

qab_count - Count

This field specifies the number of bytes or items to transfer or some other
count associated with the function being performed This field is set by the
user and is 4 bytes long.

qab_buffer1 - Address of buffer 1

This field specifies the address of the first buffer. For functions which re-
quire a device/file specification, this field specifies the address of that
specification. For functions which transfer data, this field specifies the ad-
dress of the data buffer. This field is set by the user and is 8 bytes long.
The high order 2 bytes are not used.

qab_buffer2 - Address of buffer 2

This field specifies the address of the second buffer. For the QFNC_RE-
NAME function, this field specifies the address of the new name. For the
QFNC_OUTDATAGRAM function, this field specifies the address of the
remote address string. For functions which use a characteristics list, this

XOS Programmer's Guide
QAB Format

334

field specifies the address of that list. This field is filled in by the user and
is 8 bytes long. The high order 2 bytes are not used.

qab_parmlist - Address of I/O parameter list

This field specifies the address of a parameter list if one is used. This field
is filled in by the user and is 8 bytes long. The high order 2 bytes are not
used.

The qab_status, qab_error, and qab_amount fields are always filled in by the system;
the user does not need to initialize them to any particular values. The qab_handle
field is set by the system for some functions and must be set by the user for others.
All other fields must be initialized by the user.

svcIoQueue System Call - Chapter 15
QAB Format

335

Summary of svcIoQueue Functions

Table 15.3 summarizes the values for the high order byte of the qab_func field. This
value is bit encoded and is independent of the function code stored in the low order
byte of this field.

Table 15.3 - High Order Byte of qab_func
Bit Name Meaning
15 QFNC$WAIT Wait until complete
14 QFNC$DIO Direct I/O
9 QFNC$CHILDTERM Wait unit child process terminates
8 QFNC$SAMEPROC Run program in same process

The meanings of these bits are described in detail below.

QFNC$WAIT (bit 15) = Wait until complete

When this bit is set, the svcIoQueue call blocks until the requested opera-
tion is complete. When this bit is not set, the call returns as soon as the re-
quest is queued.

QFNC$DIO (bit 14) = Direct I/O

When this bit is set, the requested operation is performed as a direct I/O
operation (see Chapter 2 for a discussion of queued versus direct I/O) if
the device supports direct I/O. If it does not support direct I/O, a simulated
direct I/O operation is done using a queued request. This is done by dis-
abling signals (if they were enabled) until the call returns and doing a nor-
mal queued I/O request. Note that this is only useful if the QFNC$WAIT
bit is also set. The effect of this is to make the queued I/O operation
non-interruptable. This feature is used by the DOS emulator to insure that
DOS programs will not be confused by the XOS I/O queuing scheme.

When this bit is not set, the requested operation is performed as a queued
I/O operation if the device supports queued I/O. If it does not support
queued I/O, a direct I/O operation is performed.

QFNC$CHILDTERM (bit 9) = Wait until child process terminates

This bit is only used by the QFNC_RUN function. When it is set, the
QFNC_RUN function does not complete until the child process created
terminates. Also, qab_amount will receive the termination status of the
child process instead of the PID of the process. If QFNC$WAIT is also

XOS Programmer's Guide
Summary of svcIoQueue Functions

336

set, the call will not return until the child process terminates. If a termina-
tion signal is requested (qab_vector non-zero), the signal does not occur
until the child process terminates. This bit is ignored if
QFNC$SAMEPROC is also set.

QFNC$SAMEPROC (bit 8) = Run program in same process

This bit is only used by the QFNC_RUN function. When it is set, the pro-
gram being run is run in the same process which issued the svcIoQueue
call, replacing the current program. In this case, the svcIoQueue call will
never return.

The low order byte of qab_func is value encoded and specifies the I/O function to be
performed. Table 15.4 summarizes the values for this byte.

Table 15.4 - Low Order Byte of qab_func
Name Value Meaning
QFNC_OPEN 1 Open device/file
QFNC_DEVPARM 2 Device parameters
QFNC_DEVCHAR 4 Device characteristics
QFNC_DELETE 5 Delete file
QFNC_RENAME 6 Rename file
QFNC_PATH 8 Path functions
QFNC_CLASSFUNC 9 Class functions
QFNC_INBLOCK 12 Input block
QFNC_OUTBLOCK 14 Output block
QFNC_OUTSTRING 15 Output string
QFNC_SPECIAL 19 Special device functions
QFNC_LABEL 20 Read or write volume label
QFNC_COMMIT 21 Commit data to media
QFNC_CLOSE 22 Close file

The svcIoQueue functions are defined in detail in the following sections.

svcIoQueue System Call - Chapter 15
Summary of svcIoQueue Functions

337

QFNC_OPEN - Open Device or File

QFNC_OPEN

QAB USAGE:

Field Usage
qab_func Function
qab_status Returned status
qab_error Returned error code
qab_amount Returned number of items
qab_handle Returned device handle
qab_vector Signal vector number
qab_option Open command bits
qab_count Not used
qab_buffer1 Address of device/file specification
qab_buffer2 Not used
qab_parmlist Address of I/O parameter list

VALUE RETURNED:

The value stored in qab_amount is 1 if the device was successfully opened
or 0 if an error occurred.

Note that this is the only svcIoQueue function that modifies the qab_han-
dle field. The handle assigned is returned in this field.

DESCRIPTION:

This function opens a device or file specified by name (pointed to by the
qab_buffer1 field) and associates a device handle with it that is used to
identify the device or file for other I/O operations.

The qab_option field contains the open command bits, which are summa-
rized the Table 15.5.

Table 15.5 - Open Command Bits
Name Bit Description
O$REPEAT 31 Repeated operation
O$REQFILE 30 Require file structured device
O$NOMOUNT 29 Do not mount device if not mounted
O$ODF 28 Open directory as file
O$FAILEX 27 Fail if file exists

XOS Programmer's Guide
QFNC_OPEN - Open Device or File

338

Table 15.5 - Open Command Bits
Name Bit Description
O$CREATE 26 Create new file if file does not exist
O$TRUNCA 25 Truncate existing file allocated length
O$TRUNCW 24 Truncate existing file written length
O$APPEND 23 Append to file
O$FHANDLE 22 Force handle
O$UNQNAME 21 Create unique name for file
O$NOWCL 20 Do not allow wild-card search lists
O$DFLTWILD 19 Default to wild-card extension
O$NORDAH 16 Do not read ahead
O$NODFWR 15 Do not defer writes
O$CONTIG 14 File allocation must be contiguous
O$CRIT 13 Do critical error processing
O$FAPPEND 12 Force append
O$SEQUENL 11 Sequential I/O only
O$PHYS 10 Physical I/O
O$RAW 9 Raw I/O
O$FNR 8 Fail if device is not ready
O$PARTIAL 7 Accept partial input
O$NOINH 6 Device cannot be passed to child
O$XWRITE 5 Exclusive write access
O$XREAD 4 Exclusive read access
O$DGOUT 3 Datagram output is allowed
O$DGIN 2 Datagram input is allowed
O$OUT 1 Output is allowed
O$IN 0 Input is allowed

The open command bits are described in detail below.

O$REPEAT (bit 31) = Repeated operation
This bit specifies that the operation should be repeated. This bit is
only valid for the device parameter, delete, and rename functions. It
is generally used in conjunction with a wildcard file specification to
act upon multiple files with a single system call. If a file specification
is returned (IOPAR_FILOPTN and IOPAR_FILSPEC specified),
the operation will be repeated until the file specification buffer is full
or until no more matching files are available. If no file specification
is returned, the operation will be repeated until no more matching
files are available. Any parameter values returned which reflect the
length of a file will contain the sum of the values for all files found. If

svcIoQueue System Call - Chapter 15
QFNC_OPEN - Open Device or File

339

the svcIoQueue call is used, the qab_count field will contain the
number of files found. Bit 31 will be set if the operation stopped be-
cause the file specification buffer was full.

O$REQFILE (bit 30) = Require file structured device
If this bit is set, the operation will fail with an ER_NTFIL error if the
device is not a file structured device.

O$NOMOUNT (bit 29) = Do not mount device if not mounted
If this bit is set and O$RAW or O$PHYS are also set, the automatic
disk mount operation is suppressed. It has no effect if O$RAW or
O$PHYS are not set or if the device is not a disk. If the device is a re-
mote network disk, this bit affects the remote disk, not the network
device.

O$ODF (bit 28) = Open directory as file
If this bit is set, the final directory in the file specification is opened.
This directory can then be read as if it were a file using the normal
I/O calls (this is not generally recommended, since the directory for-
mat varies between different file systems), or it may be efficiently
searched by specifying the handle obtained here as the value of the
IOPAR_DIRHNDL parameter. This is the recommended procedure
for obtaining the contents of a directory since it is reasonably effi-
cient and is independent of file system type. Note that directories can
also be scanned using the IOPAR_DIROFFSET parameter without
opening the directory, but this method is significantly less efficient
since it requires the system to re-open the directory for each system
call.

O$FAILEX (bit 27) = Fail if file exists
If this bit is set, the function will fail if the file specified exists. It has
no effect if the file does not exist. This bit is commonly used to guar-
antee that an existing file is not overwritten when creating a new file.

O$CREATE (bit 26) = Create new file if file does not exist
If this bit is set, a new file is created if the file specified does not ex-
ist. It has no effect if the file exists.

O$TRUNCA (bit 25) = Truncate existing file allocated length
If this bit is set and the file specified exists, the allocated and written
lengths of the file are reduced to zero . It has no effect if the file does
not exist.

XOS Programmer's Guide
QFNC_OPEN - Open Device or File

340

O$TRUNCW (bit 24) = Truncate existing file written length
If this bit is set and the file specified exists, the written length of the
file is reduced to zero. The allocated length of the file is not changed,
and no space is deallocated. If the file does not exist, this bit has no
effect. This bit can be used effectively when a file is to be overwritten
with new data. Keeping the existing allocation for the file signifi-
cantly reduces the overhead involved in this operation. Any extra al-
located space will normally be deallocated when the file is closed.

O$APPEND (bit 23) = Append to file
When this bit is set, the I/O position is set to the end of the file when
the file is opened. It has no effect for operations which do not open a
file.

O$FHANDLE (bit 22) = Force handle
When this bit is set, the value of qab_handle is used as the handle to
use. The call will fail if this handle is not free. This bit should only be
set when using the svcIoQueue system call, since this is the only call
which provides access to the qab_handle field.

O$UNQNAME (bit 21) = Create unique name for file
When this bit is set, a unique name is created for the file. The name is
created using the number of the process and a globally incremented
value to insure complete uniqueness. The name created is concate-
nated to the file specification string given, which must provide at
least 14 bytes for the name.

O$NOWCL (bit 20) = Do not allow wildcard search lists
When this bit is set, the characters { and } (which normally delimit
wild-card search lists) are treated as normal file name characters,
thereby disabling the wildcard search list feature. This option is
needed to provide complete compatibility with the DOS file system
calls since these are valid DOS file name characters, which are used
by some DOS programs.

O$DFLTWILD (bit 19) = Default to wild-card extension
When this bit is set and no extension is specified (no period in name),
a default wildcard extension (.*) is added to the file specification for
file systems which use explicit extensions (DOS, XOS, and VMS).
This bit is ignored for file systems which do not use explicit exten-
sions (Unix) and for non-file structured devices.

svcIoQueue System Call - Chapter 15
QFNC_OPEN - Open Device or File

341

The following bits are stored in the handle table and affect the operation of
a device for as long as it is open.

O$NORDAH (bit 16) = Do not read ahead
When this bit is set, automatic read-ahead is disabled for accesses to
the file or device. Normally the system will read ahead several
blocks to attempt to keep the disk cache filled with data which will
soon be accessed. It has no effect for non-disk devices or for disks
which do not support read-ahead. When a disk is open in raw mode
(O$RAW set), setting this bit disables multi-sector transfers.

O$NODFWR (bit 15) = Do not defer writes
When this bit is set, all data is written to the disk immediately.
Normally, the system defers writing some data in an effort to opti-
mize write accesses. This bit has no effect for non-disk devices or for
disks which do not support deferred writes.

O$CONTIG (bit 14) = File allocation must be contiguous
When this bit is set, any attempt to allocate space to a file will fail if
the space cannot be allocated contiguously with the rest of the space
allocated to the file. The system normally allocates contiguous space
whenever it can. Setting this bit requires such allocation.

O$CRIT (bit 13) = Do critical error processing
When this bit is set, certain device errors will cause a critical error
signal to be requested. This allows compatibility with DOS style crit-
ical error handling.

O$FAPPEND (bit 12) = Force append
When this bit is set, the I/O position for the file cannot be set previ-
ous to the end of the file. This has the effect of forcing all output to
the file to be appended to the end of the file. Data in the file cannot be
read when this bit is set. This bit is ignored for non-file structured de-
vices.

O$SEQUENL (bit 11) = Sequential I/O only
When this bit is set, the set I/O position operations are not allowed,
forcing completely sequential access to the file. Setting this bit al-
lows additional optimizations for network data transfers and can
sometimes significantly increase network performance.

XOS Programmer's Guide
QFNC_OPEN - Open Device or File

342

O$PHYS (bit 10) = Physical I/O
When this bit is set, the device is opened for physical I/O. The exact
meaning of this option is device dependent. For terminals, it sets the
terminal to image input and image output. For disks, it specifies that
I/O is to be done directly between the device and the user buffer, by-
passing the system’s disk cache buffers. If a file name is specified for
the disk, it is ignored. It also causes the device position to be inter-
preted as a raw disk address (sector, track, and cylinder) instead of as
a disk block number.

O$RAW (bit 9) = Raw I/O
When this bit is set, it indicates that raw I/O transfers are to be done.
The exact meaning of this is device dependent and is described in de-
tail with the description of each device.

O$FNR (bit 8) = Fail if device is not ready
When this bit is set, any attempt to transfer data to or from a device
which is not ready will fail with an ER_NTRDY error instead of
waiting until the device is ready.

O$PARTIAL (bit 7) = Accept partial input
When this bit is set, certain I/O input operations for certain devices
will complete when fewer than the requested number of bytes have
been input. This applies mainly to image input operations from TRM
class devices and for input operations from TCP class devices.

O$NOINH (bit 6) = Device should not be passed to child
When this bit is set, the device is not passed to a child process created
with the QFNC_RUN function when the RUN$ALLPROC option is
used. It will be passed to the child process if it is explicitly referenced
in the IOPAR_DEVLIST I/O parameter, however.

O$XWRITE (bit 5) = Exclusive write access
When this bit is set, only one write access to the file is allowed. If the
file is already open for write access and this bit is set, the open func-
tion will fail. Once the file has been opened with this bit set, any
other attempt to open the file for write access (O$OUT set) will fail.
This bit is ignored if the device is not file structured.

O$XREAD (bit 4) = Exclusive read access
When this bit is set, only one read access to the file is allowed. If the
file is already open for read access and this bit is set, the attempt to

svcIoQueue System Call - Chapter 15
QFNC_OPEN - Open Device or File

343

open the file will fail. Once the file has been opened with this bit set,
any other attempt to open the file for read access (O$IN set) will fail.
This bit is ignored if the device is not file structured.

O$DGOUT (bit 3) = Datagram output is allowed
When this bit is set, datagram output operations are allowed.

O$DGIN (bit 2) = Datagram input is allowed
When this bit is set, datagram input operations are allowed.

O$OUT (bit 1) = Output is allowed
When this bit is set, general output operations are allowed. This bit
must also be set for any operation which changes the length of a file,
even if no data is transferred.

O$IN (bit 0) = Input is allowed
When this bit is set, general input operations are allowed.

EXAMPLES:

XOS Programmer's Guide
QFNC_OPEN - Open Device or File

344

QFNC_DEVPARM - Device Parameters

QFNC_DEVPARM

QAB USAGE:

Field Usage
qab_func Function
qab_status Returned status
qab_error Returned error code
qab_amount Returned number of items
qab_handle Not used
qab_vector Signal vector number
qab_option Open command bits
qab_count Not used
qab_buffer1 Address of device/file specification
qab_buffer2 Not used
qab_parmlist Address of I/O parameter list

VALUE RETURNED:

The value returned in the qab_amount field is the number of items pro-
cessed.

DESCRIPTION:

This svcIoQueue function processes an I/O parameter list for a device or
file specified by name without actually opening the device or file. In most
cases, this functions is equivalent to an QFNC_OPEN function followed
by a QFNC_CLOSE function. An exception is that the
QFNC_DEVPARM function allows the O$REPEAT command bit while
QFNC_OPEN function does not.

This svcIoQueue function is most often used to obtain information about a
file, such as the creation date and time, or the written or allocated length.
It is also used to obtain a list of files in a directory (with the O$REPEAT
bit set). This is the standard method of obtaining the contents of a direc-
tory. XOS does not have a separate directory search function.

The contents of the qab_option field specifies the open command bits for
the operation. See the description of the QFNC_OPEN function for a de-
scription of these bits. The qab_buffer1 field gives the address of the
string which specifies the device or file. Wild card characters are allowed.

svcIoQueue System Call - Chapter 15
QFNC_DEVPARM - Device Parameters

345

The qab_parmlist field specifies the address of the I/O parameter list. I/O
parameter lists are described in detail in Chapter 11.

The value returned in the qab_amount field is the number of files pro-
cessed. This will be 0 or 1 unless O$REPEAT was set in the qab_option
field. This value is always available, even if an error occurs. In this case, it
indicates the number of files successfully processed before the error oc-
curred.

EXAMPLES:

XOS Programmer's Guide
QFNC_DEVPARM - Device Parameters

346

QFNC_DEVCHAR - Device Characteristics
Functions

QFNC_DEVCHAR

QAB USAGE:

Field Usage
qab_func Function (QFNC_CLASS)
qab_status Returned status
qab_error Returned error code
qab_amount Returned number of items
qab_handle Device handle
qab_vector Signal vector number
qab_option Sub-function and open command bits
qab_count Not used
qab_buffer1 Not used
qab_buffer2 Address of class characteristic list
qab_parmlist Address of I/O parameter list

VALUE RETURNED:

The value returned in the qab_amount field is the number of items pro-
cessed.

DESCRIPTION:

This function provides a number of sub-functions relating to device char-
acteristics.

All of these sub-functions use a device characteristics list, which is
pointed to by the value of the qab_buffer2 field. This device characteris-
tics list consists of a sequence of device characteristic items, followed by a
byte containing 0. Each item consists of a 10 byte header, followed by a
value between 0 and 32 bytes in length. A detailed description of the for-
mat of each item is given in Chapter 13. A discussion of how any why de-
vice characteristics are used is also found in Chapter 13.

The sub-functions for the QFNC_DEVCHAR function are summarized in
Table 15.6.

svcIoQueue System Call - Chapter 15
QFNC_DEVCHAR - Device Characteristics Functions

347

Table 15.6 - Device Characteristics Functions
Name Value Meaning
DCF_SIZE 1 Get size of complete characteristics list
DCF_ALL 3 Get complete characteristics list
DCF_TYPE 5 Get type and size of single characteristic
DCF_VALUES 7 Get or set characteristics values

These sub-functions are described in detail below.

DCF_SIZE = 1 - Get size of complete characteristics list
This functions returns, in the qab_amount field, the number of bytes
required for a buffer to hold a complete device characteristics list for
the device.

DCF_ALL = 3 - Get complete characteristics list
This function returns, in the buffer pointed to by the qab_buffer2
field, a skeleton device characteristics list containing all device char-
acteristics defined for the device. Each entry has the PAR$SET
and/or the PAR$GET bits set if they are valid for the characteristic.
The length of each is sufficient to hold all valid values. The pointer
part of each string value contains a null pointer. The buffer length
part is filled in with the length buffer required for the longest possi-
ble string which can be returned by the characteristic. The value re-
turned in the qab_amount field is the number of items in the
characteristic list.
Before this characteristic list is used to obtain or set values, the user
must scan through it and clear PAR$SET and/or PAR$GET bits as
necessary. The user must also allocate string buffers and fill in the
string pointers for characteristics with string values.
This function is intended to allow a program to determine all valid
characteristics for a device and then to obtain or change their values.
This function is used by the DEVCHAR command to list all charac-
teristics for a device.

DCF_TYPE = 5 - Get format and size of single characteristic
This function returns the type and size of a single characteristic. The
QAB field, qab_buffer2, must point to a characteristic containing a
single entry. That entry must specify a characteristic name in the sec-
ond through tenth bytes. The values of the first two bytes are ignored,
as is anything following the characteristic name. There must be at
least 12 bytes available following the characteristic in which data
will be returned. The first 2 bytes will be filled in by this function to

XOS Programmer's Guide
QFNC_DEVCHAR - Device Characteristics Functions

348

indicate the valid functions, format, and size for the characteristic. If
the characteristic has a string value, the buffer length field in the
value will also be filled in. The value returned in the qab_amount
field is always 1 unless an error occurred, in which case it is 0.
This function is intended to allow a program to display or change the
value of any device characteristic without it having any advance
knowledge of the format or size of the characteristic. It is used by the
DEVCHAR command when individual characteristics are specified.

DCF_VALUES = 7 - Get or set characteristics values
This function returns or sets device characteristics values. Each de-
vice characteristic in the characteristic list pointed to by the
qab_buffer2 field is processed. Values are obtained or set as speci-
fied by the PAR$GET and PAR$SET bits in the first byte of each
characteristic. The value returned in the qab_amount field is the
number of characteristics processed.

EXAMPLES:

svcIoQueue System Call - Chapter 15
QFNC_DEVCHAR - Device Characteristics Functions

349

QFNC_DELETE - Delete File

QFNC_DELETE

QAB USAGE:

Field Usage
qab_func Function
qab_status Returned status
qab_error Returned error code
qab_amount Returned number of items
qab_handle Not used
qab_vector Signal vector number
qab_option Open command bits
qab_count Not used
qab_buffer1 Address of file specification
qab_buffer2 Not used
qab_parmlist Address of I/O parameter list

VALUE RETURNED:

The value returned in the qab_amount field is the number of files deleted.

DESCRIPTION:

This function deletes the file(s) specified by the string whose addesss is
given by the qab_buffer1 field. The I/O parameter list, whose address is
given by the qab_parmlist field, is processed before any files are deleted.
Wild-card characters are valid in the file name or extension. This function
is only valid for file structured devices.

EXAMPLES:

XOS Programmer's Guide
QFNC_DELETE - Delete File

350

QFNC_RENAME - Rename File

QFNC_RENAME

QAB USAGE:

Field Usage
qab_func Function
qab_status Returned status
qab_error Returned error code
qab_amount Returned number of items
qab_handle Not used
qab_vector Signal vector number
qab_option Open command bits
qab_count Not used
qab_buffer1 Address of file specification
qab_buffer2 Address of new file name
qab_parmlist Address of I/O parameter list

VALUE RETURNED:

The value returned in the qab_amount field is the number of files re-
named.

DESCRIPTION:

This function renames the file(s) specified by the string whose address is
given by the qab_buffer1 field to the new name(s) specified by the string
whose address is given by the qab_buffer2 field. Wild card characters may
be used in the file name and extension in the qab_buffer1 string and wild
card substitution characters (see Chapter 2) may be used in the
qab_buffer2 string. This function is only valid for file structured devices.

EXAMPLES:

svcIoQueue System Call - Chapter 15
QFNC_RENAME - Rename File

351

QFNC_PATH - Path Functions

QFNC_PATH

QAB USAGE:

Field Usage
qab_func Function
qab_status Returned status
qab_error Returned error code
qab_amount Returned 0 value
qab_handle Not used
qab_vector Signal vector number
qab_option Open command bits
qab_count Not used
qab_buffer1 Address of device/path specification
qab_buffer2 Not used
qab_parmlist Address of I/O parameter list

VALUE RETURNED:

The value returned in qab_amount is always 0.

DESCRIPTION:

This function sets or gets the current directory path for a device. If the
string pointed to by the qab_buffer1 field contains only a device name, the
current directory path for that device is returned. The path is returned as
the value of the IOPAR_FILSPEC I/O parameter which must be included
in the parameter list pointed to by the qab_parmlist field if the value is to
be obtained. The IOPAR_FILOPTN I/O parameter must also be present to
specify which components of the path are to be returned. If a path is in-
cluded in the qab_buffer1 string, the current directory path for the device
is set to the path specified. All directories in the path must exist and be
searchable by the process issuing the QFNC_PATH function or an error
will be returned.

EXAMPLES:

XOS Programmer's Guide
QFNC_PATH - Path Functions

352

QFNC_CLASSFUNC - Class Functions

QFNC_CLASSFUNC

QAB USAGE:

Field Usage
qab_func Function
qab_status Returned status
qab_error Returned error code
qab_amount Returned number of items
qab_handle Not used
qab_vector Signal vector number
qab_option Sub-function
qab_count Not used
qab_buffer1 Address of class name
qab_buffer2 Address of class characteristics list
qab_parmlist Not used

VALUE RETURNED:

The value returned in qab_amount is the number of items processed. The
exact meaning of this value depends on the sub-function.

DESCRIPTION:

This function performs various functions involving device classes. This in-
cludes getting or setting the values of class characteristics, adding units to
devices belonging to a class, and any additional class dependent functions
defined for a specific class.

The sub-functions for the QFNC_DEVCHAR function are summarized in
Table 15.7.

Table 15.7 - Device Characteristics Functions
Name Value Meaning
CF_SIZE 1 Get size of complete characteristics list
CF_ALL 3 Get complete characteristics list
CF_TYPE 5 Get type and size of single characteristic
CF_VALUES 7 Get or set characteristics values
CF_ADDUNIT 8 Add unit to device class

9+ Class dependent functions

svcIoQueue System Call - Chapter 15
QFNC_CLASSFUNC - Class Functions

353

These sub-functions are described in detail below.

CF_SIZE = 1 - Get size of complete characteristics list
This functions returns, in the qab_amount field, the number of bytes
required for a buffer to hold a complete class characteristics list for
the class.

CF_ALL = 3 - Get complete characteristics list
This functions returns, in the buffer pointed to by the qab_buffer2
field, a skeleton class characteristics list containing all class charac-
teristics defined for the class. Each entry has the PAR$SET and/or
the PAR$GET bits set if they are valid for the characteristic. The
length of each is sufficient to hold all valid values. The pointer part
of each string value contains a null pointer. The buffer length part is
filled in with the length buffer required for the longest possible string
which can be returned by the characteristic. The value returned in the
qab_amount field is the number of items in the characteristic list.
Before this characteristic list is used to obtain or set values, the user
must scan through it and clear PAR$SET and/or PAR$GET bits as
necessary. The user must also allocate string buffers and fill in the
string pointers for characteristics with string values.
This function is intended to allow a program to determine all valid
characteristics for a class, and then to obtain or change their values.
This function is used by the CLSCHAR command to list all charac-
teristics for a class.

CF_TYPE = 5 - Get format and size of single characteristic
This function returns the type and size of a single characteristic. The
QAB field, qab_buffer2, must point to a characteristic containing a
single entry. That entry must specify a characteristic name in the sec-
ond through tenth bytes. The values of the first two bytes are ignored,
as is anything following the characteristic name. There must be at
least 12 bytes available following the characteristic in which data
will be returned. The first 2 bytes will be filled in by this function to
indicate the valid functions, format, and size for the characteristic. If
the characteristic has a string value, the buffer length field in the
value will also be filled in. The value returned in the qab_amount
field is always 1 unless an error occurred, in which case it is 0.
This function is intended to allow a program to display or change the
value of any class characteristic without it having any advance

XOS Programmer's Guide
QFNC_CLASSFUNC - Class Functions

354

knowledge of the format or size of the characteristic. It is used by the
CLSCHAR command when individual characteristics are specified.

CF_VALUES = 7 - Get or set characteristics values
This function returns or sets device characteristics values. Each class
characteristic in the characteristic list pointed to by the qab_buffer2
field is processed. Values are obtained or set as specified by the
PAR$GET and PAR$SET bits in the first byte of each characteristic.
The value returned in the qab_amount field is the number of charac-
teristics processed.

CF_ADDUNIT = 8 - Add unit to device class
This sub-function adds a new device unit to the class. The
qab_buffer2 field specifies the address of the add-unit characteristics
list. This list has exactly the same format as a class characteristics
list, but the names refer to add-unit characteristics. There is one com-
mon characteristic which must be included in the list. This is the
UNIT characteristic, which has a 4 byte long numeric value. It speci-
fies the unit number for the device unit being added to the class.
The value returned in the qab_amount field is 0 (if error) or 1 (if nor-
mal).

Additional class dependent functions can be defined for each device class.
These are discussed in Chapter 19.

EXAMPLES:

svcIoQueue System Call - Chapter 15
QFNC_CLASSFUNC - Class Functions

355

QFNC_INBLOCK - Input Block

QFNC_INBLOCK

QAB USAGE:

Field Usage
qab_func Function
qab_status Returned status
qab_error Returned error code
qab_amount Returned number of bytes input
qab_handle Device handle
qab_vector Signal vector number
qab_option Not used
qab_count Size of data buffer (bytes)
qab_buffer1 Address of data buffer
qab_buffer2 Not used
qab_parmlist Address of I/O parameter list

VALUE RETURNED:

The value returned in the qab_amount is the actual number of bytes input.

DESCRIPTION:

This function reads the number of bytes specified in the qab_count field
into the buffer pointed to by the qab_buffer1 field from the device speci-
fied by the device handle given in the qab_handle field.

If an I/O parameter list is specified in the qab_parmlist field, it is pro-
cessed before the data transfer is done.

EXAMPLES:

XOS Programmer's Guide
QFNC_INBLOCK - Input Block

356

QFNC_OUTBLOCK - Output Block

QFNC_OUTBLOCK

QAB USAGE:

Field Usage
qab_func Function
qab_status Returned status
qab_error Returned error code
qab_amount Returned number of bytes output
qab_handle Device handle
qab_vector Signal vector number
qab_option Not used
qab_count Number of bytes to output
qab_buffer1 Address of data buffer
qab_buffer2 Not used
qab_parmlist Address of I/O parameter list

VALUE RETURNED:

The value returned in the qab_amount field is the actual number of bytes
output.

DESCRIPTION:

This system call outputs the number of bytes specified in the qab_count
field from the buffer specified by the qab_buffer1 argument to the device
specified by the device handle given in the qab_handle field.

EXAMPLES:

svcIoQueue System Call - Chapter 15
QFNC_OUTBLOCK - Output Block

357

QFNC_OUTSTRING - Output String

QFNC_OUTSTRING

QAB USAGE:

Field Usage
qab_func Function
qab_status Returned status
qab_error Returned error code
qab_amount Returned number of bytes output
qab_handle Device handle
qab_vector Signal vector number
qab_option Not used
qab_count Maximum number of bytes to output
qab_buffer1 Address of string
qab_buffer2 Not used
qab_parmlist Address of I/O parameter list

VALUE RETURNED:

The value returned in the qab_amount field is the actual number of bytes
output.

DESCRIPTION:

This function outputs a null terminated string from the buffer pointed to by
the qab_buffer1 field to the device specified by the device handle given in
the qab_handle field. The terminating NULL is not output. The field
qab_count specifies the maximum number of bytes to output.

EXAMPLES:

XOS Programmer's Guide
QFNC_OUTSTRING - Output String

358

QFNC_SPECIAL - Special Device Functions

QFNC_SPECIAL

QAB USAGE:

Field Usage
qab_func Function
qab_status Returned status
qab_error Returned error code
qab_amount Returned value
qab_handle Device handle
qab_vector Signal vector number
qab_option Sub-function
qab_count Depends on sub-function
qab_buffer1 Depends on sub-function
qab_buffer2 Depends on sub-function
qab_parmlist Address of I/O parameter list

VALUE RETURNED:

The value returned in qab_amount depends on the sub-function.

DESCRIPTION:

This function implements various device dependent sub-functions. The
sub-function is specified in the low order byte of the qab_option field. The
interpretation of the sub-function value and of all other QAB fields is de-
vice dependent. These sub-functions are discussed in Chapter 19.

An I/O parameter list must be specified and must contain at least the
IOPAR_CLASS parameter with the PAR$SET bit set. The value specified
must be the class of the device. If this parameter is not specified, an
ER_PARMM error is returned. If the device class name is not correct, an
ER_PARMV error is returned. The purpose of this is to verify that the de-
vice is of the expected class, since the same QAB field values can perform
drastically different actions for different devices.

EXAMPLES:

svcIoQueue System Call - Chapter 15
QFNC_SPECIAL - Special Device Functions

359

QFNC_LABEL - Read or Write Volume Label

QFNC_LABEL

QAB USAGE:

Field Usage
qab_func Function
qab_status Returned status
qab_error Returned error code
qab_amount Returned value
qab_handle Device handle
qab_vector Signal vector number
qab_option Not used
qab_count Buffer length
qab_buffer1 Address of data buffer
qab_buffer2 Not used
qab_parmlist Not used

VALUE RETURNED:

Value returned is 0 in qab_amount is always 0

DESCRIPTION:

This function reads or writes the volume label on a mass storage device.
The mass storage device must be open in raw mode. The label is written or
read from the buffer specified by qab_buffer1 with length specified by
qab_count.

EXAMPLES:

XOS Programmer's Guide
QFNC_LABEL - Read or Write Volume Label

360

QFNC_COMMIT - Commit Data to Media

QFNC_COMMIT

QAB USAGE:

Field Usage
qab_func Function
qab_status Returned status
qab_error Returned error code
qab_amount Returned 0
qab_handle Device handle
qab_vector Signal vector number
qab_option Not used
qab_count Not used
qab_buffer1 Not used
qab_buffer2 Not used
qab_parmlist Not used

VALUE RETURNED:

The value returned in qab_amount is always 0.

DESCRIPTION:

This functions causes all data currently held in memory associated with a
file or mass storate device to be written to the device. When issued for a
file, it writes all file data and the file’s directlry entry and attributes. When
issued for a raw device, it writes all cached data for the device. This will
not necessarily update directory entries and file attributes, but will write
all file data. The function does not complete until all data has been written.

EXAMPLES:

svcIoQueue System Call - Chapter 15
QFNC_COMMIT - Commit Data to Media

361

QFNC_CLOSE - Close File

QFNC_CLOSE

QAB USAGE:

Field Usage
qab_func Function
qab_status Returned status
qab_error Returned error code
qab_amount Returned value
qab_handle Device handle
qab_vector Signal vector number
qab_option Close command bits
qab_count Not used
qab_buffer1 Not used
qab_buffer2 Not used
qab_parmlist Address of I/O parameter list

VALUE RETURNED:

The value returned in qab_amount is 0 or 1.

DESCRIPTION:

This function closes the device or file specified by the device handle in the
qab_handle field. Any current I/O operations pending for the device or file
are completed and the association between the handle and the device or
file is removed. The handle is made idle and available for re-use. As long
as a valid handle is specified, the handle will always be freed by this func-
tion, even is one or more errors occur while closing the device or file. The
value returned is 1 if the handle was freed, or 0 if not (only possible if the
handle was invalid).

EXAMPLES:

QFNC_IOCLOSE

XOS Programmer's Guide
QFNC_CLOSE - Close File

362

Chapter 16

Input/Output System Calls

This section describes the XOS system calls which perform input/output operations
and related functions, except for the svcIoQueue system call, which is described in
Chapter 15.

XOS provides a single general purpose I/O call, svcIoQueue, which can be used to
specify any I/O operation with any available option. It also provides a number of
specialized calls for individual operations (such as svcIoOpen or svcIoInBlock),
which are generally easier to use but do not provide access to all options. The most
significant difference between svcIoQueue and the other I/O functions is that
svcIoQueue allows for non-blockin or asynchronous I/O operations, which return
control to the caller as soon as the operation is started. Completion of the I/O opera-
tion is then usually signaled with a signal.

Many of the system calls described in this chapter are actually implemented as small
user mode functions which set up a QAB and then issue an svcIoQueue system call.
Except when single-stepping, this is transparent to the user mode program.

Input/Output System Calls - Chapter 16

363

svcIoCancel - Cancel I/O Request

svcIoCancel

CALLING SEQUENCE:

XOSSVC svcIoCancel(struct qab far *qab, long bits);

VALUE RETURNED:

The value returned is 0 if normal or a negative error code if an error oc-
curred.

DESCRIPTION:

This system call cancels outstanding queued I/O requests. One or more
outstanding I/O requests for the device specified by the qab_handle field
of the QAB pointed to by the argumentqab is canceled if it has not yet
been started or aborted if it is currently active. The exact behavior is con-
trolled by the value of the argumentbits which is bit encoded and is sum-
marized in Table 16.1.

Table 16.1 - svcIoCancel Request Bits
Name Bit Description
CAN$ALL 6 Cancel all requests for device
CAN$AFTER 5 Cancel this and all following requests
CAN$NOINT 4 Do not interrupt
CAN$OUTPUT 1 Cancel output requests
CAN$INPUT 0 Cancel input requests

The meanings of these bits are described in detail below.

CAN$ALL (bit 6) = Cancel all requests
When this bit is set, all outstanding requests (as specified by the
CAN$INPUT and CAN$OUTPUT bits) for the device indicated by
the qab_handle field of the QAB pointed to by theqabargument are
canceled.

CAN$AFTER (bit 5) = Cancel this and all following requests
When this bit is set, the request associated with the QAB pointed to
by theqab argument and all following requests for the device (as
specified by the CAN$INPUT and CAN$OUTPUT bits) are can-
celed. This bit is ignored if CAN$ALL is also set.

XOS Programmer's Guide
svcIoCancel - Cancel I/O Request

364

CAN$NOINT (bit 4) = Do not interrupt
When this bit is set, the normal termination interrupt is suppressed
for the canceled or aborted I/O requests.

CAN$OUTPUT (bit 1) = Cancel output requests
When this bit is set for a full duplex device, output requests are can-
celed. When it is set for a non-full duplex device, both input and out-
put requests are canceled.

CAN$INPUT (bit 0) = Cancel input requests
When this bit is set for a full duplex device, input requests are can-
celed. It is ignored for a non-full duplex device.

Note that for this system call to do anything, at least one of the
CAN$OUTPUT or CAN$INPUT bits must be set. For a non-full duplex
device, the CAN$OUTPUT bit must always be set. If neither of the
CAN$ALL or CAN$AFTER bits is set, only the request associated with
the QAB specified by theqabargument is canceled.

EXAMPLES:

Input/Output System Calls - Chapter 16
svcIoCancel - Cancel I/O Request

365

svcIoClose - Close Device

svcIoClose

CALLING SEQUENCE:

XOSSVC svcIoClose(long dev, long options);

VALUE RETURNED:

The value returned is zero unless an error occurred, in which case the
value is the negative error code.

DESCRIPTION:

This system call closes a device descriptor previously opened. There are
several options that can be specified when closing the file. These options
are bit encoded in theoptionsargument as follows:

Name Bit Description
C$RESET 31 Reset file/device to original state
C$DELETE 3 Delete file
C$TRUNC 1 Truncate file at current I/O position
C$NODEAL 0 Do not deallocate unwritten space in file

These bits are described in detail below.

C$RESET (bit 31) = Reset file/device to original state

C$DELETE (bit 3) = Delete file

C$TRUNC (bit 1) = Truncate file at current I/O position

C$NODEAL (bit 0) = Do not deallocate unwritten space in file

This system call is implemented as a user mode routine which sets up a queued argu-
ment block (qab) and then issues an svcIoQueue system call. More complete control
of this operation is available by using the QFNC_CLOSE function of the
svcIoQueue system call directly.

EXAMPLES:

XOS Programmer's Guide
svcIoClose - Close Device

366

svcIoControl - I/O Request Control

svcIoControl

CALLING SEQUENCE:

XOSSVC svcIoControl(struct qab far *qab, func, data);

VALUE RETURNED:

The value returned is zero if normal or a negative error code if an error oc-
curred.

DESCRIPTION:

This system call controls the handling of I/O requests which are currently
being executed. It will fail with an ER_NACT error if the request is still
waiting to start or has already completed. Values specified in an I/O pa-
rameter list are not used until a request is started (not when the request is
queued), so any value (such as a timeout value), changed in the I/O param-
eter list after a request is queued but before it is started, will be effective.
It will not be effective if it is changed after the request is started. The cor-
rect procedure for changing a parameter value is to first change the value
in the parameter list (in case the request is not yet started), and then to is-
sue a svcIoControl call to change the value if the request has been started.
An ER_NACT error should be ignored. Parameter list values that do not
have a matching svcIoControl function should not be changed after the re-
quest is queued. The argumentfunc specifies the function to perform as
summarized in Table 16.2.

Table 16.2 - svcIoControl Request Bits
Name Value Description
QIOC_SITO 1 Set input time-out
QIOC_SOTO 2 Set output time-out

Following is a detailed description of these functions.

QIOC_SITO = 1 - Set input time-out
This function changes the time-out value for the current input opera-
tion for full duplex devices. If the device is not full duplex, this func-
tion is identical to the QIOC_SOTO function. The input time-out
value is set to the value specified in thedataargument.

Input/Output System Calls - Chapter 16
svcIoControl - I/O Request Control

367

QIOC_SOTO = 2 - Set output time-out
This function changes the time-out value for the current output oper-
ation for full duplex devices or the current input or output operation
for non-full duplex devices. The time-out value is set to the value
specified in thedataargument.

EXAMPLES:

XOS Programmer's Guide
svcIoControl - I/O Request Control

368

svcIoDefLog - Define Logical Name

svcIoDefLog

CALLING SEQUENCE:

XOSSVC svcIoDefLog(long proc, long type, char far *name, char far *defin);

VALUE RETURNED:

The value returned is 0 if normal or a negative error code if an error oc-
curred.

DESCRIPTION:

This system call defines a logical device name.

The logical name is defined for the process specified by the argument
proc. If bits 14 and 15 of this value are both 1, a system level logical name
is defined. If the entire value is 0, the logical name is defined in the ses-
sion level process for the process issuing the system call. Otherwise, the
argument specifies a PID. The process specified must be a session level
process.

The argumenttypespecifies the type of logical name being defined

Name Bit Description
TLN$SUBST 30 Substituted logical name
TLN$ROOTED 29 Rooted logical name

These values are described in detail below. All bits not specified are re-
served and must be 0.

TLN$SUBST (bit 30) = Define substituted logical name
When this bit is 1, the logical name is defined as a substituted logical
name. See Chapter 2 for a discussion of substituted logical names.
When it is 0, the name is defined as a non-substituted logical name.

LOG$ROOTED (bit 29) = Define rooted logical name
When this bit is 1, the logical name is defined as a rooted logical
name. See Chapter 2 for a discussion of rooted logical names. When
it is 0, the name is defined as a non-rooted logical name.

The argumentnamespecifies the logical name being defined. This must be
a 1 to 8 character name containing only letters, numbers, or the characters

Input/Output System Calls - Chapter 16
svcIoDefLog - Define Logical Name

369

underscore, minus, or dollar sign. It must be followed by a colon and the
string must be terminated with a NULL.

The argument defin specifies the definition for the logical name. This must
begin with a valid device name (which may be null), optionally followed
by a path specification. A path specification, if given, must end with a
back-slash character. A name which begins with an underscore character is
a physical only name. The name (with the underscore removed) is taken as
the name of a physical device, i.e., no further logical name searches are
done. Normally, a logical name search is done on each name in a defini-
tion chain until no match can be found. Specifying names which are
known to be real device names as physical names reduces overhead some-
what by eliminating unnecessary logical name searches. This feature can
also be used to prevent a user from changing an important logical name by
redefining its target name.

A non-substituted logical name may be defined as a search list logical
name. This is done by providing a list of two or more definitions separated
by commas in the string specified by the defin argument. When this logi-
cal name is used, the system will attempt to access the file specified using
each element of the list in turn until the access succeeds.

A discussion of the use of logical names can be found in Chapter 2.

EXAMPLES:

XOS Programmer's Guide
svcIoDefLog - Define Logical Name

370

svcIoDelete - Delete File

svcIoDelete

CALLING SEQUENCE:

XOSSVC svcIoDelete(long cmdbits, void far *name, struct parmlist far *parmlist);

VALUE RETURNED:

The value returned is the number of files deleted if normal or a negative
error code if an error occurred.

DESCRIPTION:

The file specified in the argumentnameis deleted by this call. The file-
name may contain wildcards, although wildcards are not allowed in the
device or directory specifications.

The argumentcmdbitsspecifies open command bits used when accessing
the file to be deleted. These bits are defined in the description of the
svcIoOpen system call.

The argumentparmlsit is a pointer to an optional I/O parameter list.

Note that if an error occurs on a repeated delete, the number of files de-
leted before the error occurred is not available with this call. This number
can be obtained by using the QFNC_DELETE function with the
svcIoQueue call. This system call is implemented as a user mode routine
which sets up a queued argument block (qab) and then issues an
svcIoQueue system call. More complete control of this operation is avail-
able by using the QFNC_DELETE function of the svcIoQueue system call
directly.

EXAMPLES:

Input/Output System Calls - Chapter 16
svcIoDelete - Delete File

371

svcIoDevParm - Get or Set Device Parameters

svcIoDevParm

CALLING SEQUENCE:

XOSSVC svcIoDevParm(long cmd, char far *name, struct parmlist far *parmlist);

VALUE RETURNED:

The value returned is the number of items processed (a positive value) if
normal or a negative error code if an error occurred.

DESCRIPTION:

This system call processes an I/O parameter list for a device or file speci-
fied by name without actually opening the device or file. In most cases,
this call is equivalent to an svcIoOpen system call followed by an
svcIoClose system call. An exception is that the svcIoDevParm call allows
the O$REPEAT command bit while the svcIoOpen call does not.

This call is most often used to obtain information about a file, such as the
creation date and time, or the written or allocated length. It is also used to
obtain a list of files in a directory (with the O$REPEAT bit set). This is the
standard method of obtaining the contents of a directory. XOS does not
have a separate directory search function.

Thecmdargument specifies the open command bits for the operation. See
the description of the svcIoQueue function QFNC_OPEN in Chapter 15
for a description of these bits. Thenameargument specifies the device or
file. wildcard characters are allowed. Theparmlist argument specifies the
address of the I/O parameter list. I/O parameter lists are described in detail
in Chapter 11.

The value returned is the number of files processed. This will be 1 unless
O$REPEAT was set in thecmd argument. If an error occurs on the n-th
file processed with O$REPEAT set, the value of n is not available, except
by counting the number of names returned for the IOPAR_FILSPEC pa-
rameter if it is used. This system call is implemented as a user mode rou-
tine which sets up a queued argument block (qab) and then issues an
svcIoQueue system call. More complete control of this operation is avail-
able by using the QFNC_DEVPARM function of the svcIoQueue system
call directly.

EXAMPLES:

XOS Programmer's Guide
svcIoDevParm - Get or Set Device Parameters

372

svcIoDstName - Build Destination Name

svcIoDstName

CALLING SEQUENCE:

XOSSVC svcIoDstName(char far *gvnname, char far *rtnname, char far *dstname,
long dstlength);

VALUE RETURNED:

The value returned is the length of the name built (positive) if normal or a
negative error code if an error occurred.

DESCRIPTION:

This system call builds a destination file name for a copy or rename opera-
tion when given a destination file specification (which includes wildcard
characters) and the file specification string returned by the
IOPAR_FILSPEC parameter when the source file was opened. While this
function is a utility routine which could be duplicated by user written
code, its use to generate destination names is strongly recommended. XOS
wildcard handling for source/destination file operations is very complex
and the use of this system call insures uniform behavior for such opera-
tions.

The argumentgvnnamepoints to a string containing the file specification
given for the destination file. It may contain wildcard characters or
wild-card replacement fields (see the description of wildcard handling in
Chapter 2). The argumentrtnnamepoints to a string which was returned
by the IOPAR_FILSPEC I/O parameter for the open call which accessed
the source file. This string must include at least the file name and the file
search mask (FO$NAME and FO$MASK set in the value of the
IOPAR_FILOPTN I/O parameter). Other returned items may also be pres-
ent. The destination name is returned in the buffer pointed to by the argu-
ment dstname. The length of this buffer is specified by the argument
dstlength. The length should be at least the length of the string pointed to
by gvnnameplus 14 (for DOS file systems) or 34 (for XOS file systems).
To allow for possible new file systems which will be supported in the fu-
ture, add at least 70 to the length of the given file specification. In any
case, a length of 512 will always be sufficient, since this is the internal
XOS file specification maximum length.

EXAMPLES:

Input/Output System Calls - Chapter 16
svcIoDstName - Build Destination Name

373

svcIoDupHandle - Duplicate Device Handle

svcIoDupHandle

CALLING SEQUENCE:

XOSSVC svcIoDupHandle(long oldhandle, long newhandle, long newcmd);

VALUE RETURNED:

The value returned is the new handle (positive) if normal or a negative er-
ror code if an error occurred.

DESCRIPTION:

This system call duplicates an open device handle. The new handle can be
either allocated or specified explicitly.

The argumentoldhandlespecifies a currently open device handle which is
to be duplicated. The argumentnewhandlespecifies the new handle. A
value of -1 means to allocate a handle. The argumentnewcmdspecifies
new open command bits for the duplicated handle. A value of 0 means to
use the open command bits from the old handle without change.

If a new handle is specified and that handle is currently open, the next
available handle (in increasing numeric value) will be used.

EXAMPLES:

XOS Programmer's Guide
svcIoDupHandle - Duplicate Device Handle

374

svcIoFindLog - Find Logical Name

svcIoFndLog

CALLING SEQUENCE:

XOSSVC svcIoFindLog(long proc, char far *string, char far *name, char far *defin,
long length, long far *skip);

VALUE RETURNED:

The value returned is the length of the defined name returned ored with
the type bits from the definition (positive value) if normal or a negative er-
ror code if an error occurred. The type bits are:

Name Bit Description
TLN$SUBST 30 Substituted logical name
TLN$ROOTED 29 Rooted logical name

These bits are described in detail below.

TLN$SUBST (bit 30) = Define substituted logical name
When this bit is 1, the logical name is a substituted logical name.
When it is 0, the name is a non-substituted logical name. See Chapter
2 for a discussion of substituted logical names.

LOG$ROOTED (bit 29) = Define rooted logical name
When this bit is 1, the logical name is a rooted logical name. When it
is 0, the name is a non-rooted logical name. See Chapter 2 for a dis-
cussion of rooted logical names.

DESCRIPTION:

This system call searches for a specified logical name. wildcard characters
can be used.

The logical name is searched for in the process specified by the argument
proc. If bits 14 and 15 of this value are both 1, the system level logical
names are searched. If the entire value is 0, the logical name is searched
for in the session level process for the process issuing the system call. Oth-
erwise, the argument specifies a process ID. The process specified must be
a session level process.

The argument string points to the name to search for, which may contain
wildcard characters. The argumentnamepoints to a buffer which receives

Input/Output System Calls - Chapter 16
svcIoFindLog - Find Logical Name

375

the logical name actually matched. This buffer must be at least 13 bytes
long. The argument defin points to a buffer which receives the definition
of the logical name. The length of this buffer is specified by the argument
length. If the definition of the logical name is too long to fit in the buffer,
the final two characters stored in the buffer are s RUBOUT (0xFF) fol-
lowed by a null (0x00). Otherwise, the definition is stored followed by a
null (0x00). It is recommended that a length of 513 bytes be used, since
this is the maximum length of an XOS logical name, plus one for a final
null character.

The argument skip points to a 32-bit longword which specifies the number
of definitions to skip before starting to check for a match. This value is up-
dated so that a succeeding call will return the next logical name in the ta-
ble, assuming no definitions are added or removed. A value of 0 returns
the first matching definition.

EXAMPLES:

XOS Programmer's Guide
svcIoFindLog - Find Logical Name

376

svcIoInBlock - Input Block

svcIoInBlock

CALLING SEQUENCE:

XOSSVC svcIoInBlock(long handle, char far *buffer, long count);

VALUE RETURNED:

The value returned is the positive number of bytes read if the operation
was successful or a negative error code if an error occurred.

DESCRIPTION:

This call reads the number of bytes specified in thecountargument into
the buffer pointed to by thebuffer argument from the device specified by
the device handle given by thehandleargument.

If an I/O parameter list is specified by theparmlist argument, it is pro-
cessed before the data transfer is done.

This system call is implemented as a user mode routine which sets up a
queued argument block (qab) and then issues an svcIoQueue system call.
More complete control of this operation is available by using the
QFNC_INBLOCK function of the svcIoQueue system call directly.

EXAMPLES:

Input/Output System Calls - Chapter 16
svcIoInBlock - Input Block

377

svcIoInBlockP - Input Block/Parameter List

svcIoInBlockP

CALLING SEQUENCE:

XOSSVC svcIoInBlockP(long handle, char far *buffer, long size, struct parmlist far
*parmlist);

VALUE RETURNED:

The value returned is the positive number of bytes read if the operation
was successful or a negative error code if an error occurred.

DESCRIPTION:

This system call is the same as the svcIoInBlock system call except that it
also specifies an I/O parameter list. The parameter list is processed before
the data transfer is done.

This system call is implemented as a user mode routine which sets up a
queued argument block (qab) and then issues an svcIoQueue system call.
More complete control of this operation is available by using the
QFNC_INBLOCK function of the svcIoQueue system call directly.

EXAMPLES:

XOS Programmer's Guide
svcIoInBlockP - Input Block/Parameter List

378

svcIoInSingle - Input Byte

svcIoInSingle

CALLING SEQUENCE:

XOSSVC svcIoInSingle(long handle);

VALUE RETURNED:

The value returned is the data byte value (zero extended to 32-bits) unless
an error occurred, in which case a negative error code is returned.

DESCRIPTION:

This system call reads a single byte from the device specified by the de-
vice handle given in the handle argument.

This system call is implemented as a user mode routine which sets up a
queued argument block (qab) and then issues an svcIoQueue system call.
More complete control of this operation is available by using the
QFNC_INBLOCK function of the svcIoQueue system call directly.

EXAMPLES:

Input/Output System Calls - Chapter 16
svcIoInSingle - Input Byte

379

svcIoInSingleP - Input Byte/Parameter List

svcIoInSingleP

CALLING SEQUENCE:

XOSSVC svcIoInSingleP(long dev, struct parmlist far *parmlist);

VALUE RETURNED:

The value returned is the data byte value (zero extended to 32 bits) unless
an error occurred, in which case a negative error code is returned.

DESCRIPTION:

This system call is the same as the svcIoInSingle system call except that it
allows the specification of an I/O parameter list. The I/O parameter list is
processed before the data transfer is done.

This system call is implemented as a user mode routine Which sets up a
queued argument block (qab) and then issues an svcIoQueue system call.
More complete control of this operation is available by using the
QFNC_INBLOCK function of the svcIoQueue system call directly.

EXAMPLES:

XOS Programmer's Guide
svcIoInSingleP - Input Byte/Parameter List

380

svcIoOpen - Open Device or file

svcIoOpen

CALLING SEQUENCE:

XOSSVC svcIoOpen(long cmdbits, char far *name, parmlist far *parmlist);

VALUE RETURNED:

The value returned is the positive device handle allocated unless an error
occurred, in which case a negative error code is returned.

DESCRIPTION:

The device or file specified by the argumentnameis set up for use for in-
put or output or both and a device handle is associated with the device or
file. The operations to be allowed and some options for the open function
itself are specified by the value of thecmdbitsargument. These values are
described in the description of the QFNC_OPEN svcIoQueue function in
Chapter 15.

This system call is implemented as a user mode routine which sets up a
queued argument block (qab) and then issues an svcIoQueue system call.
More complete control of this operation is available by using the
QFNC_OPEN function of the svcIoQueue system call directly.

EXAMPLES:

Input/Output System Calls - Chapter 16
svcIoOpen - Open Device or file

381

svcIoOutBlock - Output Block

svcIoOutBlock

CALLING SEQUENCE:

XOSSVC svcIoOutBlock(long handle, void far *buffer, long count);

VALUE RETURNED:

The value returned is the positive number of bytes actually output unless
an error occurred, in which case a negative error code is returned.

DESCRIPTION:

This system call outputs the number of bytes specified in thecountargu-
ment from the buffer specified by the buffer argument to the device speci-
fied by the device handle given by the handle argument.

This system call is implemented as a user mode routine which sets up a
queued argument block (QAB) and then issues an svcIoQueue system call.
More complete control of this operation is available by using the
QFNC_OUTBLOCK function of the svcIoQueue system call directly.

EXAMPLES:

XOS Programmer's Guide
svcIoOutBlock - Output Block

382

svcIoOutBlockP - Output Block/Parameter List

svcIoOutBlockP

CALLING SEQUENCE:

XOSSVC svcIoOutBlockP(long dev, char far *data, long size, struct parmlist far *
parmlist)

VALUE RETURNED:

The value returned is the positive number of bytes actually output unless
an error occurred, in which case a negative error code is returned.

DESCRIPTION:

This system call is the same as the svcIoOutBlock system call except that
it allows an I/O parameter list to be specified. The I/O parameter list is
processed before the I/O transfer is done.

This system call is implemented as a user mode routine which sets up a
queued argument block (qab) and then issues an svcIoQueue system call.
More complete control of this operation is available by using the
QFNC_OUTBLOCK function of the svcIoQueue system call directly.

EXAMPLES:

Input/Output System Calls - Chapter 16
svcIoOutBlockP - Output Block/Parameter List

383

svcIoOutSingle - Output Byte

svcIoOutSingle

CALLING SEQUENCE:

XOSSVC svcIoOutSingle(long handle, long byte);

VALUE RETURNED:

The value returned is the amount output (0 or 1) unless an error occurred,
in which case a negative error code is returned

DESCRIPTION:

The single byte contained in thebyteargument (the high order 24-bits are
ignored) is output to the device specified by the device handle given by
thehandleargument.

This system call is implemented as a user mode routine which sets up a
queued argument block (QAB) and then issues an svcIoQueue system call.
More complete control of this operation is available by using the
QFNC_OUTBLOCK function of the svcIoQueue system call directly.

EXAMPLES:

XOS Programmer's Guide
svcIoOutSingle - Output Byte

384

svcIoOutSingleP - Output Byte/Parameter List

svcIoOutSingleP

CALLING SEQUENCE:

XOSSVC svcIoOutSingleP(long dev, long byte, struct parmlist far * parmlist);

VALUE RETURNED:

The value returned is the amount output (0 or 1) unless an error occurred,
in which case a negative error code is returned

DESCRIPTION:

This system call is the same as the svcIoOutSingle system call except that
it allows an I/O parameter list to be specified. The I/O parameter list is
processed before the I/O transfer is done.

This system call is implemented as a user mode routine which sets up a
queued argument block (QAB) and then issues an svcIoQueue system call.
More complete control of this operation is available by using the
QFNC_OUTBLOCK function of the svcIoQueue system call directly.

EXAMPLES:

Input/Output System Calls - Chapter 16
svcIoOutSingleP - Output Byte/Parameter List

385

svcIoOutString - Output String

svcIoOutString

CALLING SEQUENCE:

XOSSVC svcIoOutString(long handle, void far *buffer, long count);

VALUE RETURNED:

The value returned is the positive number of bytes actually output, unless
an error occurred, in which case a negative error code is returned.

DESCRIPTION:

This system call outputs a null terminated string from the buffer pointed to
by thebuffer argument to the device specified by the device handle given
by thehandleargument. The terminating NULL is not output. The argu-
mentcountspecifies the maximum number of bytes to output. A value of 0
indicates that there is no maximum number specified.

This system call is implemented as a user mode routine which sets up a
queued argument block (qab) and then issues an svcIoQueue system call.
More complete control of this operation is available by using the
QFNC_OUTSTRING function of the svcIoQueue system call directly.

EXAMPLES:

XOS Programmer's Guide
svcIoOutString - Output String

386

svcIoOutStringP - Output String/Parameter List

svcIoOutStringP

CALLING SEQUENCE:

XOSSVC svcIoOutStringP(long dev, void far *data, long size, struct parmlist far *
parmlist);

VALUE RETURNED:

The value returned is the positive number of bytes actually output, unless
an error occurred, in which case a negative error code is returned.

DESCRIPTION:

This system call is the same as the svcIoOutString system call except that
it allows an I/O parameter list to be specified. The I/O parameter list is
processed before the I/O transfer is done.

This system call is implemented as a user mode routine which sets up a
queued argument block (QAB) and then issues an svcIoQueue system call.
More complete control of this operation is available by using the
QFNC_OUTSTRING function of the svcIoQueue system call directly.

EXAMPLES:

Input/Output System Calls - Chapter 16
svcIoOutStringP - Output String/Parameter List

387

svcIoPath - Set Default Path

svcIoPath

CALLING SEQUENCE:

XOSSVC svcIoPath(long cmdbits, char far *path, struct parmlist far *parmlist);

VALUE RETURNED:

The value returned is 0 if normal or a negative error code if an error oc-
curred.

DESCRIPTION:

This system call sets or returns the current directory path for a device. If
the string pointed to by the argumentpath contains only a device name,
the current directory path for that device is returned. The path is returned
as the value of the IOPAR_FILSPEC I/O parameter which must be in-
cluded in the parameter list pointed to by the argumentparmlist if the
value is to be obtained. The IOPAR_FILOPTN I/O parameter must also be
present to specify which components of the path are to be returned. If a
path is included in thepathstring, the current directory path for the device
is set to the path specified. All directories in the path must exist and be
searchable by the process issuing the svcIoPath call or an error will be re-
turned.

This system call is implemented as a user mode routine which sets up a
queued argument block (QAB) and then issues an svcIoQueue system call.
More complete control of this operation is available by using the
QFNC_PATH function of the svcIoQueue system call directly.

EXAMPLES:

XOS Programmer's Guide
svcIoPath - Set Default Path

388

svcIoPorts - Control Access to I/O Ports

svcIoPorts

CALLING SEQUENCE:

XOSSVC svcIoPorts(long func, long base, long num);

VALUE RETURNED:

The value returned is 0 if normal or a negative error code if an error oc-
curred.

DESCRIPTION:

This system call controls direct access to I/O ports by a user program. The
process issuing this call must have the PORTIO privilege. The first argu-
ment,func, specifies the function to perform. A value of 1 indicates to al-
low access to the specified I/O ports and a value of 2 indicates to disallow
access. All other values are illegal. Thebaseargument specifies the first
port affected. Thenum argument specifies the number of ports affected.
Only ports between 0 and 0x3FF (inclusive) may be allowed or disal-
lowed.

This system call should be used with care, since no checking is done to see
if the port(s) requested are already in use. Misuse of this call and the re-
sulting ability to directly access I/O ports can easily cause a system fail-
ure. It is intended for use by programs which must have direct, efficient
access to a device’s I/O ports.

If ports which would normally be virtualized by the system are specified
as allowed, the virualization is by-passed and direct access is allowed.

EXAMPLES:

Input/Output System Calls - Chapter 16
svcIoPorts - Control Access to I/O Ports

389

svcIoRename - Rename File

svcIoRename

CALLING SEQUENCE:

XOSSVC svcIoRename(long cmdbits, char far *oldname, char far *newname,
struct parmlist far *parmlist);

VALUE RETURNED:

The value returned is the number of files renamed unless an error oc-
curred, in which case the negative error code is returned. Note that if an
error occurs on a repeated rename, the number of files renamed before the
error occurred is not available with this call. This number can be obtained
by using the QFNC_RENAME function with the svcIoQueue call.

DESCRIPTION:

The name and extension of the file specified in the first parameter is
changed to the name and extension specified by the second parameter. The
third parameter is a pointer to a device parameter block which will receive
the file information for the file(s) which were renamed.

EXAMPLES:

XOS Programmer's Guide
svcIoRename - Rename File

390

svcIoRun - Run or Load Program

svcIoRun

CALLING SEQUENCE:

XOSSVC svcIoRun(QAB *qab);

VALUE RETURNED:

The value returned is 0 if the function was started succesfully or a nega-
tive error code if an error occured during the initial part of execution.

The value returned in qab_error must also be checked (see below).

DESCRIPTION:

This system call executes a program or batch command file. The program
or command file can be executed in the same process or in a child process,
depending on the options specified. This is the normal XOS mechanism to
load and execute a program or batch command file.

A program to be executed can be either an XOS or a DOS program. If the
program issueing this system call is an XOS program, the new program or
command file either completely replaces the calling program or is exe-
cuted as a child process. If the program issueing this system call is a DOS
program and new program is also a DOS program, it can be run in the
same process as the calling program without terminating the calling pro-
gram or it can be executed as a child process. If the new program is an
XOS program or a command file, it either replaces the calling program or
is executed as a child process. A special case allows any program to be
loaded into the same process but not executed. This is normally only used
by debuggers to load the program to be debugged.

The single argument, qab, provides the address of a “queued IO argument
block” (QAB). This is the same argument block that is used with the
svcIoQueue system call. The usage of the QAB is described below.

Input/Output System Calls - Chapter 16
svcIoRun - Run or Load Program

391

Field Usage
qab_func Function
qab_status Returned status
qab_error Returned error code
qab_amount Returned PID and image type
qab_handle Not used
qab_vector Signal vector number
qab_option Run option bits
qab_count Not used
qab_buffer1 Address of device/file specification
qab_buffer2 Not used
qab_parmlist Address of I/O parameter list

In the qab_func value, the high order byte is not currently used. A future
version of XOS may use the QFNC_WAIT bit in this byte. The
QFNC_WAIT bit in qab_func is currently ignored and the system call al-
ways waits for completion. Note that in this case completion means that
the child process is ready to start executing. Most the data transfer needed
to load the new program is done in the child process, and occures after the
call is “complete”. A future version of XOS may remove this restriction
when a program is run in a child process and allow this call to be com-
pletely non-blocking in this case. When the calling program is to be re-
placed by the loaded program, it does not make much sense to not wait. To
insure future compatability, the QFNC_WAIT bit should always be set.

The low order of qab_func contains the “run function” as follows:

Name Value Description

RFNC_RUN 1 Load and execute program

RFNC_LOAD 2 Load program only

The values returned in the qab_status and qab_error fields are the same as
for the svcIoQueue system call.

The value returned in qab_amount is the PID merged with the image type
of the child process if a child process was created as follows.

XOS Programmer's Guide
svcIoRun - Run or Load Program

392

Bits Description

31-16 Process sequence number (high order half of the PID)

15-12 Image type

Name Value Description

IT_XOS32 1 XOS 32-bit protected mode process

IT_XOS16 2 XOS 16-bit protected mode process

IT_XOSV86 3 XOS 16-bit “real” mode process

IT_DOSEXE 8 DOS process loaded from .EXE file

IT_DOSCOM 9 DOS process loaded from .COM file

IT_BATCH 15 Batch process

11-0 Process index (low order half of the PID)

The qab_vector field can be set to specify a vector for a signal upon com-
pletion. Since the call is always blocking this is not very useful, but it does
work if desired. The signal will always be requested before the call re-
turns.

The qab_option field contains the run options bits which are defined be-
low:

Name Value Description

SAMEPROC 0x80000000 Use same process

CHILDTERM 0x40000000 Function is not complete until child process termi-
nates

SESSION 0x04000000 Create new session for child process

DEBUG 0x02000000 Do debug load of program into same process

CPYENV 0x00800000 Copy current enviroment to new process

ACSENV 0x00400000 Allow new process to access this process’s
enviroment

CHGENV 0x00200000 Allow new process to change this process’s
enviroment

ALLDEV 0x00080000 Pass all devices to new process (device list is

CPYPTH 0x00040000 Copy default paths to new process

CHGPTH 0x00020000 Allow new process to change this process’s default

DOSEXEC 0x00000001 DOS EXEC function (XOS internal use only)

The qab_buffer1 field points to the string which specifies the file to load.

The qab_parmlist field points to an IO parameter list which may contain
both normal IO parameters (which refer to the file being loaded and can
do such things as return its full specification) and the special RUN IO pa-

Input/Output System Calls - Chapter 16
svcIoRun - Run or Load Program

393

rameters, which are only used with this system call and specify or return
various attributes of the new process being created.

EXAMPLES:

XOS Programmer's Guide
svcIoRun - Run or Load Program

394

svcIoSetPos - Set I/O Position

svcIoSetPos

CALLING SEQUENCE:

XOSSVC svcIoSetPos(long dev, long pos, long mode);

VALUE RETURNED:

The value returned is the new absolute position in the file, which is always
positive, unless an error occurred, in which case the value will be the neg-
ative error code.

DESCRIPTION:

This function sets the current I/O position for a currently open file. The
first parameter is the device descriptor for a currently open file. The sec-
ond parameter is the desired offset within the file. The third parameter
specifies how this offset will be applied, and must be one of the following
values:

Value Description
0 Absolute
1 Relative to current position
2 Relative to the end of file
3 No change (return current position only)

Any other value results in an ER_FUNC error. The offset in the file re-
turned is always relative to the beginning of the file, regardless of the
mode value specified.

EXAMPLES:

Input/Output System Calls - Chapter 16
svcIoSetPos - Set I/O Position

395

svcIoWait - Wait Until I/O is Complete

svcIoWait

CALLING SEQUENCE:

XOSSVC svcIoWait(struct qab far *qab);

VALUE RETURNED:

The value returned is zero if normal or a negative error code if an error oc-
curred.

DESCRIPTION:

This system call waits until the I/O operation associated with the QAB
specified by the argumentqab is complete. If there is no active outstand-
ing I/O operation for the QAB, this call returns immediately. This call has
no provision for specifying a time-out value. If a time-out is desired, it
should be specified when the I/O operation is queued. Issuing this call im-
mediately after an svcIoQueue call with the QFNC$WAIT bit not set in
the qab_func field is equivalent to issuing the svcIoQueue call with the
QFNC$WAIT bit set. The process can be interrupted when waiting, as-
suming the state of the processes allows the interrupt otherwise.

EXAMPLES:

svcIoWait

XOS Programmer's Guide
svcIoWait - Wait Until I/O is Complete

396

Chapter 17

Terminal System Calls

The terminal functions system calls perform various terminal related functions.
They are somewhat like the I/O functions in that all of them take a device descriptor
as an argument, but the device specified must be a terminal class device.

Terminal System Calls - Chapter 17

397

svcTrmAttrib - Get or Set Display Attributes

svcTrmAttrib

CALLING SEQUENCE:

XOSSVC svcTrmAttrib(longhandle, longfunc, void far *data);

VALUE RETURNED:

The value returned is 0 if normal or a negative error code if an error oc-
curred.

DESCRIPTION:

This system call sets or reads the default screen attributes. The handle ar-
gument must contain a handle for a terminal device. The func argument
specifies the function as follows:

Bit Meaning

7 Set to change current values

6 Set to return previous values

0-5 Specify set of values

1 = Text mode base values

2 = Graphics mode base values

3 = Current values

The data argument specifies the address of a data block which contains 4
long values. These values specify (in order) forground color, background
color, forground fill color, and background fill color. The fill colors are
used when ever an area is filled as a result of scrolling.

EXAMPLES:

XOS Programmer's Guide
svcTrmAttrib - Get or Set Display Attributes

398

svcTrmCurPos - Get or Set Cursor Position

svcTrmCurPos

CALLING SEQUENCE:

XOSSVC svcTrmCurPos(longhandle, longpage, longcolumn, longrow);

VALUE RETURNED:

The value returned is the previous cursor position encoded as the character
position plus 256 times the line position (positive value) if normal or a
negative error code if an error occurred.

DESCRIPTION:

The current cursor position on the page specified by thepageargument on
the screen device specified by the device handle given in thehandleargu-
ment is set to the column and row specified in thecolumnandrow argu-
ments. A value of -1 for either the column or row values means not to
change that value.

EXAMPLES:

Terminal System Calls - Chapter 17
svcTrmCurPos - Get or Set Cursor Position

399

svcTrmCurType - Get or Set Cursor Type

svcTrmCurType

CALLING SEQUENCE:

XOSSVC svcTrmCurType(longhandle, longcurtype);

VALUE RETURNED:

The value returned is the previous cursor type unless an error occurred, in
which case the negative error code is returned.

DESCRIPTION:

The screen device specified by the device descriptor given in thehandle
argument has the cursor type set as specified by thecurtypeargument. The
cursor type is defined as the ending line value plus 256 times the starting
line value. Specifying -1 does not change the cursor type.

EXAMPLES:

XOS Programmer's Guide
svcTrmCurType - Get or Set Cursor Type

400

svcTrmDspPage - Get or Set Current Display
Page

svcTrmDspPage

CALLING SEQUENCE:

XOSSVC svcTrmDspPage(longhandle, longpage);

VALUE RETURNED:

The value returned is the previous display page if normal or a negative er-
ror code if an error occurred.

DESCRIPTION:

The console device specified by thehandleargument is set to display the
display page specified by thepageargument. If thepageargument is -1,
no change is made.

EXAMPLES:

Terminal System Calls - Chapter 17
svcTrmDspPage - Get or Set Current Display Page

401

svcTrmFunction - General Terminal Functions

svcTrmFunction

CALLING SEQUENCE:

XOSSVC svcTrmFunction(long handle, longfunc);

VALUE RETURNED:

The value returned is 0 if normal or a negative error code if an error oc-
curred.

DESCRIPTION:

This system call implements a number of simple terminal functions. These
functions are summarized in Table 17.1.

Table 17.1 - svcTrmFunction Functions
Name Value Function
TF_RESET 0 Reset terminal data to defaults
TF_ENECHO 1 Enable echoing
TF_DSECHO 2 Disable echoing
TF_CLRINP 3 Clear input buffers
TF_CLROUT 4 Clear output buffer
TF_ENBOUT 5 Enable output

These functions are described in detail below.

TF_RESET = 0 - Reset terminal data to defaults
This function resets the value of all terminal data to the values used
when an idle terminal is opened.

TF_ENECHO = 1 - Enable echoing
This function enables echoing of input. This is equivalent to setting
the TIM$ECHO bit with the IOPAR_SINMODE device characteris-
tic.

TF_DSECHO = 2 - Disable echoing
This function disables echoing of input. This is equivalent to clearing
the TIM$ECHO bit with the IOPAR_CINMODE device characteris-
tic.

XOS Programmer's Guide
svcTrmFunction - General Terminal Functions

402

TF_CLRINP = 3 - Clear input buffers
This function clears the terminal input buffers. This includes the in-
put ring buffer and the input line buffer.

TF_CLROUT = 4 - Clear output buffer
This function clears the output ring buffer.

TF_ENBOUT = 5 - Enable output
This function enables output that has been disabled by typing ctrl-O.

EXAMPLES:

Terminal System Calls - Chapter 17
svcTrmFunction - General Terminal Functions

403

svcTrmGetAtChr - Get Attribute and Character

svcTrmGetAtChr

CALLING SEQUENCE:

XOSSVC svcTrmGetAtChr(longhandle, longpage);

VALUE RETURNED:

The value returned is the character value plus 256 times the attribute value
with the high 16-bits set to zero if normal or a negative error code if an er-
ror occurred.

DESCRIPTION:

This system call returns the character and attribute from the current cursor
position. It is only valid for displays in text mode..

EXAMPLES:

XOS Programmer's Guide
svcTrmGetAtChr - Get Attribute and Character

404

svcTrmGCurCol - Set Graphic Cursor Colors

svcTrmGCurCol

CALLING SEQUENCE:

XOSSVC svcTrmGCurCol(longhandle, longnumber, long far *colors);

VALUE RETURNED:

The value returned is 0 if normal or a negative error code if an error oc-
curred.

DESCRIPTION:

This system call sets the colors used to display the hardware graphics cur-
sor in graphic mode. This function is only implemented for display inter-
faces which require access to IO registers to set the graphics cursor colors.
Since memory mapped registers are directly accessable to the application,
this function is not necessary when the cursor colors are set using memory
mapped registers.

Thehandleargument must specify a handle for a console device which is
in graphic mode. Thenumberargument specifies the number of colors to
set. Currently this value must be 1 or 2. Thecolorsargument specifies the
address of an array of longs which specify the cursor colors. The first
value in the array gives the color used when the value of the pixel in the
cursor bitmap is 0. The second value give the color used when the value of
the pixel is 1. Each value is encoded in 32 bits as three 12 bit values. The
first value (highest order bits) gives the red value, the next the green, and
the last (lowest order bits) gives the blue value (RGB 3x12 format)..

EXAMPLES:

Terminal System Calls - Chapter 17
svcTrmGCurCol - Set Graphic Cursor Colors

405

svcTrmGCurPat - Set Graphic Cursor Pattern

svcTrmGCurPat

CALLING SEQUENCE:

XOSSVC svcTrmGCurPat(longhandle, longtype, longwidth, longheight,
longxhot, longyhot, uchar far *pattern, uchar far *mask);

VALUE RETURNED:

The value returned is 0 if normal or a negative error code if an error oc-
curred.

DESCRIPTION:

This system call sets the pattern for the hardware graphics cursor in
graphic mode. This function is only implemented for display interfaces
which require access to IO registers to set the graphics cursor pattern.
Since memory mapped registers are directly accessable to the application,
this function is not necessary when the cursor pattern is set using memory
mapped registers.

Thehandleargument must specify a handle for a console device which is
in graphic mode. Thetypeargument specifies the cursor type. Currently,
this value must be 1. Thewidth andheightarguments specify the size of
the cursor bitmap. Thexhotandyhotarguments specify the position of the
cursor “hot spot” relative to the upper left corner of the cursor bitmap. The
patternargument specifies the address of the pattern bitmap. This is a one
bit per pixel bitmap which specifies one of two colors for each cursor
pixel (see the svcTrmGCurCol system call description). Each byte con-
tains 8 pixels and each row is byte alligned. Themaskargument specifies
the address of the mask bitmap. This is a one bit per pixel bitmap wehich
specifies which cursor pixels are transparent. It is also packed 8 pixels per
byte and each line is byte alligned..

EXAMPLES:

XOS Programmer's Guide
svcTrmGCurPat - Set Graphic Cursor Pattern

406

svcTrmGCurPos - Set Graphic Cursor Position

svcTrmGCurPos

CALLING SEQUENCE:

XOSSVC svcTrmGCurPos(longhandle, longfunc, longxpos, longypos);

VALUE RETURNED:

The value returned is 0 if normal or a negative error code if an error oc-
curred.

DESCRIPTION:

This system call sets the position of the hardware graphics cursor in
graphic mode. This function is only implemented for display interfaces
which require access to IO registers to set the graphics cursor position.
Since memory mapped registers are directly accessable to the application,
this function is not necessary when the cursor position is set using memory
mapped registers.

Thehandleargument must specify a handle for a console device which is
in graphic mode. Thefuncargument is bit encoded as follows:

Bit Function

1 0 = Do not change position
1 = Set new position

0 0 = Disable cursor
1 = Enable cursor

The xpos and ypos arguments specify the new cursor position in pixel
from the upper left hand corner of the screen.

EXAMPLES:

Terminal System Calls - Chapter 17
svcTrmGCurPos - Set Graphic Cursor Position

407

svcTrmLdStdFont - Load Standard Font

svcTrmLdStdFont

CALLING SEQUENCE:

XOSSVC svcTrmLdStdFont(longhandle, longtable, longfont, longbegin,
longcount);

VALUE RETURNED:

The value returned is 0 if normal or a negative error code if an error oc-
curred.

DESCRIPTION:

This system call loads one of the standard system fonts into one of the 8
VGA font blocks.

The handle argument must specify a handle for a console device. The table
argument specifies the VGA font block number in bits 2-0. Bits 6-3 are not
used and should be 0. If bit 7 is 0 the display set up is not changed. If it is
1, the display set up is changed to match the font loaded. The font argu-
ment specifies the font to load as follows:

Value Font

1 Standard 8x8 font

2 Standard 8x14 font

3 Standard 8x16 font

5 Standard 9x8 font

6 Standard 9x14 font

7 Standard 9x16 font

The beginargument specifies the first character to load and thecountar-
gument specifies the number of character to load. Thebeginvalue should
be between 0 and 255 and the sum of thebeginandcountvalues should be
256 or less.

EXAMPLES:

XOS Programmer's Guide
svcTrmLdStdFont - Load Standard Font

408

svcTrmLdCusFont - Load Custom Font

svcTrmLdCusFont

CALLING SEQUENCE:

XOSSVC svcTrmLdCusFont(longhandle, longtable, longsize, uchar far *data,
longbegin, longcount);

VALUE RETURNED:

The value returned is 0 if normal or a negative error code if an error oc-
curred.

DESCRIPTION:

This system call loads a custom font into one of the 8 VGA font blocks.

The handle argument must specify a handle for a console device. The table
argument specifies the VGA font block number in bits 2-0. Bits 6-3 are not
used and should be 0. If bit 7 is 0 the display set up is not changed. If it is
1, the display set up is changed to match the font loaded.

The sizeargument specifies the number of scan rows in each character in
the font. Thedata argument specifies the address of the array containing
the font definition. It containssizebytes for each character. The first entry
in this array defines the first character which will be stored.

The beginargument specifies the first character to load and thecountar-
gument specifies the number of character to load. Thebeginvalue should
be between 0 and 255 and the sum of thebeginandcountvalues should be
256 or less.

EXAMPLES:

Terminal System Calls - Chapter 17
svcTrmLdCusFont - Load Custom Font

409

svcTrmMapScrn - Map Screen Buffer

svcTrmMapScrn

CALLING SEQUENCE:

XOSSVC svcTrmMapScrn(longhandle, longmode, void far *buffer, longsize, long
offset);

VALUE RETURNED:

The value returned is the actual size of the memory section created (in
bytes, a positive value) if normal or a negative error code if an error oc-
curred.

DESCRIPTION:

The screen buffer for the console device specified by the device handle
given in thehandleargument is mapped at the address specified by the
buffer argument. Themodeargument indicates the screen mode desired,
while the size argument specifies the maximum amount of memory to
map. Theoffsetargument specifies the offset of the start of the part of the
screen buffer to be mapped.

EXAMPLES:

XOS Programmer's Guide
svcTrmMapScrn - Map Screen Buffer

410

svcTrmSelFont - Select Font

svcTrmSelFont

CALLING SEQUENCE:

XOSSVC svcTrmSelFont(longhandle, longprimary, longsecondary);

VALUE RETURNED:

The value returned is 0 if normal or a negative error code if an error oc-
curred.

DESCRIPTION:

The handleargumentmust specify a handle for a console device. Thepri-
mary and secondaryarguments specify the primary and secondary font
blocks for that consol display. Each must have a value between 0 and 7,
inclusive.

EXAMPLES:

Terminal System Calls - Chapter 17
svcTrmSelFont - Select Font

411

svcTrmSetAtChr - Set Attribute and Character

svcTrmSetAtChr

CALLING SEQUENCE:

XOSSVC svcTrmSetAtChr(longhandle, longpage, longchr, longattrib, long
count);

VALUE RETURNED:

The value returned is 0 if normal or a negative error code if an error oc-
curred.

DESCRIPTION:

This system call sets the character and attribute at the current cursor posi-
tion on the display page specified by thepageargument. Thechr argument
specifies the character and theattrib argument specifies the argument to
store. Thecountargument specifies the number of time the character and
attribute are to be stored, starting at the cursor position and incrementing
the position for each pair stored. The actual cursor position value, how-
ever, is not changed. It is only valid for displays in text mode.

EXAMPLES:

XOS Programmer's Guide
svcTrmSetAtChr - Set Attribute and Character

412

svcTrmSetChr - Set Character

svcTrmSetChr

CALLING SEQUENCE:

XOSSVC svcTrmSetChr(longhandle, longpage, longchr, longcount);

VALUE RETURNED:

The value returned is 0 if normal or a negative error code if an error oc-
curred.

DESCRIPTION:

This system call sets the character at the current cursor position on the dis-
play page specified by thepageargument. Thechr argument specifies the
character to store. Thecount argument specifies the number of time the
character is to be stored, starting at the cursor position and incrementing
the position for each character stored. The actual cursor position value,
however, is not changed. It is only valid for displays in text mode. No at-
tribute values are changed.

EXAMPLES:

Terminal System Calls - Chapter 17
svcTrmSetChr - Set Character

413

svcTrmScroll - Scroll Window

svcTrmScroll

CALLING SEQUENCE:

XOSSVC svcTrmScroll(longhandle, long func, longpage, longxul, longyul,
longxlr, long ylr, longcnt, longfgattrib,longbgattrib);

VALUE RETURNED:

The value returned is 0 if normal or a negative error code if an error oc-
curred.

DESCRIPTION:

This system call scrolls or clears a rectangular window on a text mode
screen. Thehandleargument contains a device handle for a console de-
vice. Thefuncargument specifies the operation to perform as follows:

Value Operation

1 Scroll up

2 Scroll down

3 Scroll right

4 Scroll left

The xul andyul specify the x position (character number) and y position
(row number) of the upper left hand corner of the rectangle to scroll or
clear. Thexlr andylr arguments sepcify the x position and y position of
the lower right hand corner of the rectangle. Thecountargument specifies
the number of positions to scroll. Acount value of 0 means to clear the
rectangle (thefuncvalue is ignored in this case). Thefgattrib andbgattrib
argument values are used to fill positions scrolled into the rectangle or
when clearing the rectangle.

EXAMPLES:

XOS Programmer's Guide
svcTrmScroll - Scroll Window

414

svcTrmWrtInB - Write to Input Buffer

svcTrmWrtInB

CALLING SEQUENCE:

XOSSVC svcTrmWrtInB(longhandle, char far*str, longcnt);

VALUE RETURNED:

The value returned is 0 if normal or a negative error code if an error oc-
curred.

DESCRIPTION:

This system writes the characters specified by the argumentsstr and cnt
into the input buffer of the terminal device specified by the device handle
given in thehandleargument. Note that the data written is specified by ad-
dress and length; it is not a null terminated string. The data is processed
exactly as if it had been typed on the terminal’s keyboard. This system call
is used by the command shell to implement the command recall feature.

EXAMPLES:

Terminal System Calls - Chapter 17
svcTrmWrtInB - Write to Input Buffer

415

Chapter 18

Screen Symbiont System Calls

This chapter describes the screen symbiont system calls. These system calls provide
special functions used by the screen symbiont. They should not be used by other
programs. All of these system calls require the SYMBIONT privilege. These system
calls provide minimal error checking. Invalid arguments to these calls can cause the
entire system to fail.

Screen Symbiont System Calls - Chapter 18

417

svcScnMapBufr - Map Physical Screen Buffer

svcScnMapBufr

CALLING SEQUENCE:

XOSSVC svcScnMapBufr(longxtdb, char far *buffer,longsize);

VALUE RETURNED:

The value returned is the amount of memory mapped (positive) if normal
or a negative error code if an error occured.

DESCRIPTION:

The xtdb argument specifies the exec offset of the terminal TDB for the
virtual screen. Thebufferargument specifies the address where the display
buffer is to be mapped. Thesizeargument specifies the amount of screen
memory to map. This memory must be unallocated.

This function maps the physical text mode display buffer for use by the
screen symbiont. This mapping is NOT affected by any screen symbiont
functions and always directly maps the physical buffer.

EXAMPLES:

XOS Programmer's Guide
svcScnMapBufr - Map Physical Screen Buffer

418

svcScnMaskWrt - Masked Write to Screen
Buffer

svcScnMaskWrt

CALLING SEQUENCE:

XOSSVC svcScnMaskWrt(longxtdb, longfunc, longfirstpg, longnumpgs,
longwidth, longheight, long far *pglist, char far *pgbufr);

VALUE RETURNED:

The value returned is 0 if nothing was written, 1 if something was written
or a negative error code if an error occurred.

DESCRIPTION:

The xtdb argument specifies the exec offset of the terminal TDB for the
virtual screen.

Other than thewidth andheightarguments, the arguments are the same as
for the svcScnTrans system call.

This function is used by the screen symbiont to update the physical display
buffer when the session menu is on the screen. It must be called for text
(not character generator) pages only. It actually does a number of separate
operations required here:

1. The page modified status is updated from all mappings of the display
buffer

2. If none of the indicated pages have been modified, all the indicated
pages are blocked and a value of 0 is returned.

3. Otherwise, the indicated pages are written to the physical buffer with
the area for the menu in the upper right hand corner (as specified by
thewidthandheightarguments of the display masked out and a value
of 1 is returned.

This function is used even though the screen symbiont has mapped the
physical buffer. This is because it combines several operations and elimi-
nates several seperate system calls and because it ensures that the updating
of the buffer is atomic.

This function is only valid when the display is in text mode.

Screen Symbiont System Calls - Chapter 18
svcScnMaskWrt - Masked Write to Screen Buffer

419

EXAMPLES:

XOS Programmer's Guide
svcScnMaskWrt - Masked Write to Screen Buffer

420

svcScnTrans - Transfter Data for Screen
Symbiont

svcScnTrans

CALLING SEQUENCE:

XOSSVC svcScnTrans(longxtdb, longfunc, longfirstpg, longnumpgs,
long far *pglist, char far *pgbufr);

VALUE RETURNED:

The value returned is the raw hardware cursor position (read transfers) or
0 (write transfers) if normal or a negative error code if an error occurred.

DESCRIPTION:

Bit 31 of the func argument specifies a read (0) or write (1) operation. The
meanings of the remaining bits of func depends on this bit. When bit 31 is
0 (read) the remaining bits are as follows:

Name Bit Meaning

SSR$FCURSOR 4 0 = Do not freeze cursor position
1 = Freeze cursor position

SSR$BLKVIRT 1 0 = Do not block access to virtualized pages
1 = Block access to virtualized pages

SSR$VIRTALL 0 0 = Only virtualize modified pages
1 = Virtualize all pages read

When bit 31 is 1 (write) the remaining bits are as follows:

Name Bit Meaning

SSW$SWITCH 3 0 = Do not switch screens
1 = Make screen specified by xtdb the current
screen

SSW$UNBLKONLY 2 0 = Normal
1 = Unlock pages only

SSW$CLRSSS 1 0 = Do not change keyboard system-shift state
1 = Clear keyboard system-shift state when
done

Screen Symbiont System Calls - Chapter 18
svcScnTrans - Transfter Data for Screen Symbiont

421

The page list is an array of longs, with one long for each page to read.
Each long has the following format:

Name Bit(s) Description

PL$MODIFIED 31 0 = Page has been cleared (bits 15-0 give con-
tents)
1 = Page has been modified

PL$VIRTUAL 30 0 = Page maps to physical display buffer
1 = Page has been virtualized

PL$BLOCKED 29 0 = Access to page is allowed
1 = Access to page is blocked

PL$INCMOD 28 0 = Page has not been modified since last check
1 = Page has been modified since last check

15-0 Gives contents for page - For pages 0 - 15 this is
the 16-bit attribute/character value for each
character position. For pages 16 - 31 this is 2 *
F + h where F is the font index and h is 0 for the
first half of the character set and 1 for the sec-
ond half.

Thefirstpg argument specifices the first page to read or write.

Thenumpgsargument specifies the number of pages in the page list.

Each page is 4096 bytes in length. Thepgbufr argument point to an array
of 4096 byte buffers, one for each page in the page list. This buffer may be
virtually allocated.

For the read function, all modified pages are read and virualized. If func-
tion bit 0 is set all pages not already virtualized are read and virualized.
Access is blocked to all pages which are not virtualized and all pages
which are virtualized are unblocked. If function bit 1 is set, access is
blocked to all pages. If a page is not read, the corresponding buffer page is
not touched. If the buffer address is null, no pages are read, virtualized, or
unblocked. The page list entry is stored for all pages in all cases.

The read function is used by the screen symbiont in several ways.

1. When placing the session menu on the screen, it is used to virtualize
any modified visible pages and block access to all visible pages.

2. When switching screens, it is used to virtualize all modified pages
and block access to all unmodified pages.

XOS Programmer's Guide
svcScnTrans - Transfter Data for Screen Symbiont

422

3. When a blocked unmodified page is touched, it is used to virtualize
and unblock the touched page.

The read function is only valid when the display is in text mode.

For the write function, if the screen specified is not the current screen for
the display, it is first made the current screen. The page list format is de-
scribed for the vgassread function. The page list is set up by the caller.
Display pages marked as modified (bit 31 = 1) are written from the corre-
sponding buffer page. Display pages marked as unmodified (bit 31 = 0)
are cleared to the value given in bits 15-0. All pages are unvirtualized and
unblocked. If function bit 2 = 1, pages are unblocked only. In this case the
buffer address must be specified to provide the access for mapping
virtualized pages, but the buffer is not accessed.

If the write function is issued when the display is not in text mode, the
only thing done is to clear the system-shift state. Everything else is ig-
nored.

EXAMPLES:

Screen Symbiont System Calls - Chapter 18
svcScnTrans - Transfter Data for Screen Symbiont

423

svcScnUtil - Screen Symbiont Utility Functions

svcScnUtil

CALLING SEQUENCE:

XOSSVC svcScnUtil(longxtdb, longdata);

VALUE RETURNED:

The value returned is the exec offset of the TDB (positive value) if the
xtdbargument has a value less than 0x1000 or 0 if normal or a negative er-
ror code if an error occurred.

DESCRIPTION:

This system call implements several utility functions for the screen
symbiont. If thextdb argument is less than 0x1000 this argument is as-
sumed to contain a device handle for a console device and the function re-
turns the exec offset of that console’s TDB (terminal data block). Thedata
argument is ignored.

If the xtdbargument is 0x1000 or greater it is assumed to be the exec off-
set of a console TDB. In this case the data argument specifies the function
as follows:

Value Function

-1 Remove cursor from physical screen

0 Wake up main program level using xtdb value + 1 as wait index

> 0 Wake up extended fork frame with this selector

EXAMPLES:

XOS Programmer's Guide
svcScnUtil - Screen Symbiont Utility Functions

424

Chapter 19

Device Dependent I/O Functions

This chapter describes the device dependent I/O functions. This functions are imple-
mented using the QFNC_SPECIAL function of the svcIoQueue system call. These
are described here rather than in the chapter which describes the other svcIoQueue
functions because of the amount of material and the fact that much of it is not
relavent to most programs since these tend to be fairly specialized functions.

These descriptions are organized by device and then by function. Some devices do
not implement any device dependent functions as thus are not included here.

Device Dependent I/O Functions - Chapter 19

425

DISK Devices

DISK special device functions are only implemented for physical disk devices, not
for files, the the underlying disk device must be opened specifying either O$RAW or
O$PHYSIO to use these functions. The DISK special device functions are
summerized in table 19.1 below.

Table 19.1 - DISK special device functions
Name Value Description

DISMOUNT 2 Dismount disk

MOUNT 3 Mount disk

FORMAT 4 Format disk

These functions are described in detail below.

DISMOUNT = 2 - Dismount disk

The disk is dismounted if it was mounted. The value returned is 1 if the
disk was mounted, 0 if it was not mounted, or a negative error code if an
error occured.

MOUNT = 3 - Mount disk

This function is intended to allow mounting a disk with a specified file
system. It is not implemented in the current version of XOS. In this ver-
sion, all disk mounting is done automatically with the type of file system
based on data read from the disk.

FORMAT = 4 - Format disk

This function is intended to allow low level formatting of floppy and hard
disks. It is not implemented in the current version of XOS.

XOS Programmer's Guide
DISK Devices

426

SPL Devices

There are no special device functions for SPL class devices.

Device Dependent I/O Functions - Chapter 19
SPL Devices

427

TAPE Devices

There are a number of special device functions implemented for TAPE class de-
vices. These are summerized in table 19.2 below.

Table 19.2 - TAPE special device functions
Name Value Description

TAPE_UNLOAD 1 Unload tape

TAPE_REWIND 2 Rewind tape

TAPE_FORMAT 3 Format tape

TAPE_RETEN 4 Retension tape

TAPE_WRITEFM 5 Write filemarks

TAPE_WRITESM 6 Write setmarks

TAPE_LOCK 7 Lock/unlock tape mounting

TAPE_ERASEGAP 8 Erase gap

TAPE_ERASEALL 9 Erase gap

TAPE_SKPREC 10 Skip records

TAPE_SKPFILE 11 Skip filemarks

TAPE_CONFILE 12 Skip to consective filemarks

TAPE_SKPSET 13 Skip setmarks

TAPE_CONSET 14 Skip to consective setmarks

TAPE_SKP2EOD 15 Skip to end-of-data

These functions are described in detail below.

TAPE_UNLOAD = 1 - Unload tape

This function rewinds and then unloads the tape. The value returned is 0 if
normal or a negative error code if an error occured.

TAPE_REWIND = 2 - Rewind tape

This function rewinds the tape. The value returned is 0 if normal or a neg-
ative error code if an error occured.

TAPE_FORMAT = 3 - Format tape

This function is not implemented in the current version of XOS.

XOS Programmer's Guide
TAPE Devices

428

TAPE_RETEN = 4. - Retension tape

This function preforms a retension operation which generally scans to the
end of the physical tape and then rewinds it. The exact behavior depends
on the type of tape drive. Not all tape drives implement this function. The
value returned is 0 if normal or a negative error code if an error occured.

TAPE_WRITEFM = 5 - Write filemarks

This function writes the number of filemarks specified by the value in
qab_count. The value returned is 0 if normal or a negative error code if an
error occured.

TAPE_WRITESM = 6 - Write setmarks

This function writes the number of setmarks specified by the value in
qab_count. The value returned is 0 if normal or a negative error code if an
error occured.

TAPE_LOCK = 7 - Lock/unlock tape mounting

This function locks or unlocks tape mounting or unmounting according to
the value in qab_count. If the value is 0 the tape is unlocked. Otherwise it
is locked. The value returned is 0 if normal or a negative error code if an
error occured.

TAPE_ERASEGAP = 8 - Erase gap

This function erases an interrecord gap on the tape. The value returned is 0
if normal or a negative error code if an error occured.

TAPE_ERASEALL = 9 - Erase entire tape

This function erases the entire tape. The value returned is 0 if normal or a
negative error code if an error occured.

TAPE_SKPREC = 10 - Skip records

This function skips the number of records specified in qab_count. The
value returned is 0 if normal or a negative error code if an error occured.

TAPE_SKPFILE = 11 - Skip filemarks

This function skips the number of filemarks specified in qab_count. The
value returned is 0 if normal or a negative error code if an error occured.

Device Dependent I/O Functions - Chapter 19
TAPE Devices

429

TAPE_CONFILE = 12 - Skip to consective filemarks

This function skips forward until the number of consective filemarks spec-
ified in qab_count are found. The value returned is 0 if normal or a nega-
tive error code if an error occured.

TAPE_SKPSET = 13 - Skip setmarks

This function skips the number of setmarks specified in qab_count. The
value returned is 0 if normal or a negative error code if an error occured.

TAPE_CONSET = 14 - Skip to consective setmarks

This function skips forward until the number of consective setmarks speci-
fied in qab_count are found. The value returned is 0 if normal or a nega-
tive error code if an error occured.

TAPE_SKP2EOD = 15 - Skip to end-of-data

This function skips forward until an end-of-data mark is found. The value
returned is 0 if normal or a negative error code if an error occured.

XOS Programmer's Guide
TAPE Devices

430

TRM Devices

There are no special device functions for TRM class devices.

Device Dependent I/O Functions - Chapter 19
TRM Devices

431

PCN Devices

The PCN device is a very specialized device which implements the server side of the
psuedo-console device. The pseudo-console device is a device which, with the co-
operation of a server process, emulates a text-mode only VGA display and console
keyboard.

The client side device is implemented as a low level terminal driver (type PCN)
which very closely emulates the actual VGA and console keyboard device inter-
faces, including all display and keyboard BIOS functions, direct access to the dis-
play buffer, direct access to the keyboard controller IO ports, and use of the
keyboard hardware interrupt. The PCN device supports display mode changes (text
modes only) and screen format and font changes using the INT 10 BIOS functions.
It does NOT support screen format or font changes made doing direct writes to the
display controller registers or direct writes to the character generator pages.

The server side interface is special to this device. It mainly uses the special device
function and asynchronous signals for interaction with the server program The
server program MUST be specially written to use this device.

The IOPAR_SIGVECT1 and IOPAR_SIGVECT2 IO parameters are used to specify
the signal vectors used. IOPAR_SIGVECT1 sets the hang up signal vector number.
The IOPAR_SIGVECT2 parameter is used to specify the mapped mode done signal
vector. This signal occures when mapped mode is disabled. It uses two sigma; data
items; the IOPAR_SIGDATA value, and the mapped mode buffer page modified
bits.

PCN names are of the form PCNn or PCNnPm where n is the primary unit number
and m is the secondary unit number. When the PCNn format is used and raw or
physical IO is specified, the partial DCB for the primary unit is returned. This DCB
does not allow any IO and is useful only for getting and setting device characteris-
tics. If raw or physical IO is not specified, a full DCB is created and a new name of
the form PCNnPm is assigned. This is the normal method of creating a new instance
of a PCN device for use by a server. If the PCNnPm form is specified, the full DCB
of that name will be returned if it exists, but a new DCB will not be created.

The client side device operates in three distinct modes: stream, mapped, and
blocked. When operating in stream mode, all data output to the TRMPn device is
written to both the display and shadow buffers and is sent to the server device as in-
put data. The display buffer is mapped read-only for all processes which have it
mapped. When operating in mapped mode, data is written to the display buffer only.
No data is sent to the server device. When operating in blocked mode, any attempt

XOS Programmer's Guide
PCN Devices

432

to modify the display contents, either by a system call or by writting directly to the
screen buffer or to change the display mode, causes the client program to be sus-
pended until the device leaves blocked mode.

The device initially operates in stream mode. It stays in stream mode until a user
process attempts to write directly to the display buffer, when it switches to mapped
mode and starts a timer. It also forces any buffered server device input to be made
immediately available to the server device. It stays in mapped mode until the timer
expires or until a display output function for the client device will cause the screen
(or part of the screen) to be scrolled, at which time it enters blocked mode (which
implies changing all user mapped buffers to read-only) and sends a notification to
the server device (signal). It stays in blocked mode until a special device function is
issued for the server device switching it to stream mode (PCSF_UNBLOCK). This
action also wakes up any processes which were suspended while the client device
was in blocked mode.

The intent of all of this is to provide reasonable performance for both character
stream display output and direct screen writes. Note that once a user program writes
directly to the screen, all writes to the screen, either by a user program or by the sys-
tem routines which implement terminal output, are treated exactly the same, except
that any system call which causes scrolling receives special treatment.

When the server program receives a notification that the mapped mode timer has ex-
pired or that a scrolling operation has been requested when in mapped mode, it must
compare the display and shadow buffers to determine what data has been changed
while in mapped mode. The device does indicate which pages have been changed.
The server program must update the shadow buffer to be the same as the display
buffer before switching the client side device back to stream mode.

A number of special device functions are used to provide the special functionality
need for this device. These are summerized in table 19.3 below.

Table 19.3 - PCN Special Device Functions
Name Value Description

PCN_SETBUF 1 Set up buffer memory

PCN_MODBUF 2 Modify buffer memory

PCN_MODESET 3 Mode set complete

PCN_DISPTYPE 4 Set display type

PCN_FONTSET 5 Set font parameters

PCN_STREAMMD 6 Set to stream mode

Device Dependent I/O Functions - Chapter 19
PCN Devices

433

PCN_SETBUF = 1 - Set up buffer memory

This function sets up screen buffer for use. Qab_buffer1 contains the base
address of the msect will contain the buffer, which must be a private
msect. Qab_count contains the number of pages to use, which in this ver-
sion of XOS must be 8. Also, the msect must be at least 64KB in size.

The display buffer is set up at the beginning of the msect using the indi-
cated number of pages. The shadow is set up immediately following the
display buffer, also using the indicated number of pages. The pages used
can be either real or virtual but must be writable. Note that once the buffer
is set up, the pages used cannot be deallocated until the device is closed.
The buffer cannot be changed or deallocated except by closing the server
side device.

PCN_MODBUF = 2 - Modify buffer memory

This function provides page-by-page control of the screen buffer.
qab_buffer contains the address of buffer page list and qab_count contains
the number of buffer page list entries. Each buffer page list entry is con-
sists of 4 bytes. The low 3 bytes specify a page number relative to the
start of the buffer. The high byte specifies the new state for the page as
follows:

0 = Blocked
1 = Read-only
2 = Read/write

PCN_MODESET = 3 - Mode set complete

This function indicates that a mode set operation is complete. Qab_buffer1
contains the address of a data block containing mode set values. This is the
data block filled in by the svcTrmDspMode system call preceeded by the
long value returned by that call. The format of this data block is as fol-
lows:

Offset Size Description

0x0 4 Mode bits

0x4 4 Active fonts

0x8 4 Number of text columns

0xC 4 Number of text rows

0x10 4 Number of horizontal pixels

0x14 4 Number of vertical pixels

XOS Programmer's Guide
PCN Devices

434

0x18 4 Display type value

PCN_DISPTYPE = 4 - Set display type

This function sets the type of the emulated display. The display type is
specified by the value in qab_count.

PCN_FONTSET = 5 - Set font parameters

This function indicates that a font set operation is complete. Qab_buffer1
contains the address of a data block containing the font set values which
has the following format:

Offset Size Description

0x0 4 Active fonts

0x4 4 Number of text columns

0x8 4 Number of text rows

0xC 4 Number of horizontal pixels

0x10 4 Number of vertical pixels

PCN_STREAMMD = 6. - Set to stream mode

This function set the device to stream mode. This is normally called after a
leaving mapped mode singal to switch back to normal stream mode opera-
tion. It does not use any additional QAB fields.

Device Dependent I/O Functions - Chapter 19
PCN Devices

435

PPR Devices

There are no special device functions for PPR class devices.

XOS Programmer's Guide
PPR Devices

436

NET Devices

There are no special device functions for NET class devices.

Device Dependent I/O Functions - Chapter 19
NET Devices

437

SNAP Devices

There are no special device functions for SNAP class devices.

XOS Programmer's Guide
SNAP Devices

438

ARP Devices

There are no special device functions for ARP class devices.

Device Dependent I/O Functions - Chapter 19
ARP Devices

439

IPS Devices

The IPS device class implements a number of special device functions, all of which
are used to manage and use the built-in DNS resolver and cache. These functions are
summerized in table 19.4 below.

Table 19.4 - IPS Special Device Functions
Name Value Description

IPS_FINDIPA 1 Map domain name to IP addresses

IPS_FINDCNAME 2 Map domain name to canonical name

IPS_FINDMAIL 3 Map domain name to mail names

IPS_FINDPTR 4 Map domain name to pointer name

IPS_DUMP 7 Dump DNS cache

IPS_INITCACHE 8 Initialize DNS cache

IPS_CLRCACHE 9 Clear DNS cache

IPS_ADDIPA 10 Add IP address entry to cache

IPS_ADDCNAME 11 Add canonical name entry to cache

IPS_ADDMAIL 12 Add mail name entry to cache

IPS_ADDPTR 13 Add pointer entry to cache

IPS_WAKEIPA 14 Wake up waiters for IP address

IPS_ERROR 15 Set error for domain name

IPS_REMOVE 16 Remove entry from cache

These functions are mainly intended for the use of the user mode part of the DNS re-
solver. In general they should not be used by other programs. They are described in
detail below.

IPS_FINDIPA = 1 - Map domain name to IP addresses

Data is specified and returned in the buffer pointed to by qab_buffer1 with
length specified in qab_count. When the function is called, the first byte of
the buffer contains modifier bits as follows:

Bits 7-4 Recursion level (should be 0 except for recursive DNS server calls)

Bits 3-1 Reserved, must be 0

Bit 0 Use counted label format for domain name (otherwise use period
format)

The remainder of the buffer contains the domain name in the specified for-
mat. On return, the buffer contains a list of IP addresses. Each address

XOS Programmer's Guide
IPS Devices

440

starts with a count byte which specifies the number of bytes in the address.
(This is currently always 4.) This is followed by the specified number of
address bytes.

Value returned is the number of IP addresses returned if normal or a nega-
tive error code if error. If some data was not returned because the buffer
was too small, bit 30 is set.

IPS_FINDCNAME = 2 - Map domain name to canonical name

Data is specified and returned in the buffer pointed to by qab_buffer1 with
length specified in qab_count. When the function is called, the first byte of
the buffer contains modifier bits as follows:

Bits 7-4 Recursion level (should be 0 except for recursive DNS server calls)

Bits 3-1 Reserved, must be 0

Bit 0 Use counted label format for domain name (otherwise use period
format)

The remainder of the buffer contains the domain name in the specified for-
mat. On return, the first byte of the buffer contains the length of the name
returned. The returned name immediately follows this byte.

Value returned is 1 if normal or a negative error code if error. A value of
0x40000000 is returned if the buffer is too small for the name.

IPS_FINDMAIL = 3 - Map domain name to mail names

Data is specified and returned in the buffer pointed to by qab_buffer1 with
length specified in qab_count. When the function is called, the first byte of
the buffer contains modifier bits as follows:

Bits 7-4 Recursion level (should be 0 except for recursive DNS server calls)

Bits 3-1 Reserved, must be 0

Bit 0 Use counted label format for domain name (otherwise use period
format)

The remainder of the buffer contains the domain name in the specified for-
mat. On return, the buffer contains a list of mail names in the specified
format. Each name is preceeded by a count byte which specifies the length
of the name.

Value returned is the number of names returned if normal or a negative er-
ror code if error. Bit 30 is set if one or more names was not returned be-
cause the buffer was too small.

Device Dependent I/O Functions - Chapter 19
IPS Devices

441

IPS_FINDPTR = 4 - Map domain name to pointer name

Data is specified and returned in the buffer pointed to by qab_buffer1 with
length specified in qab_count. When the function is called, the first byte of
the buffer contains modifier bits as follows:

Bits 7-4 Recursion level (should be 0 except for recursive DNS server calls)

Bits 3-1 Reserved, must be 0

Bit 0 Use counted label format for domain name (otherwise use period
format)

The remainder of the buffer contains the domain name in the specified for-
mat. On return, the buffer contains a list of pointer names in the specified
format. Each name is preceeded by a count byte which specifies the length
of the name.

Value returned is the number of names returned if normal or a negative er-
ror code if error. Bit 30 is set if one or more names was not returned be-
cause the buffer was too small.

IPS_DUMP = 7 - Dump DNS cache

The cache contents is returned in the buffer specified by qab_buffer1 with
length specified by qab_count. The data is stored as a sequence of blocks
for each domain name entry as follows:

Size Description

1 Number of CNAME definitions

1 Number of A definitions

1 Number of MX definitions

1 Number of PTR definitions

4 Time-to-live

1 Error bits

1 Length of domain name

n Domain name (counted label format)

Each domain name block is followed by a block for each CNAME defini-
tion, followed by a block for each A definitions, followed by a block for
each MX definition, followed by a block for each PTR deinition as fol-
lowed:

XOS Programmer's Guide
IPS Devices

442

Size Description

4 Time-to-live

2 Data value

1 Length of definition

n Definition

Value returned is the number of bytes stored if normal or a negative error
code if an error occured.

IPS_INITCACHE = 8 - Initialize DNS cache

This function initializes the DNS kernel cache. If a DNS cache exists, it is
removed. The buffer pointed to by qab_buffer1 contains the maximum
number of DNS entires allowed in the first 4 bytes followed by the IPM
destination name (up to 31 characters)

Value returned is 0 if normal or a negative error code if an error occured..

IPS_CLRCACHE = 9 - Clear DNS cache

This function removes the DNS kernel database. If the DNS database
does not exist, it does nothing. It has no parameters.

Value returned is 0 if normal or a negative error code if an error occured.

IPS_ADDIPA = 10 - Add IP address entry to cache

Data is specified in the buffer pointed to by qab_buffer1 with length speci-
fied in qab_count.

The format of the data is as follows:

Size Description

4 Offset of first IP address block

n Domain name (counted label format)

Each IP address is stored in a block as follows:

Size Description

4 Offset of next IP address block

4 Time to live (seconds)

4 Reserved, must be 0

4 Length of IP address, must be 4

4 IP address

Device Dependent I/O Functions - Chapter 19
IPS Devices

443

The value returned is 0 if normal or a negative error code if an error
occured.

IPS_ADDCNAME = 11 - Add canonical name entry to cache

Data is specified in the buffer pointed to by qab_buffer1 with length speci-
fied in qab_count. The format of the data is as follows:

Size Description

4 Offset of first canonical name block

n Domain name (counted label format)

The length of the buffer must exactly match the length of the domain
name, that is, it must be n + 24. The canonical name is stored in a block as
follows:

Size Description

4 Reserved- must be 0

4 Time to live

4 Reserved- must be 0

4 Length of cononical name

n Cononical name (counted label format)

The value returned is 0 if normal or a negative error code if an error
occured.

IPS_ADDMAIL = 12 - Add mail name entry to cache

Data is specified in the buffer pointed to by qab_buffer1 with length speci-
fied in qab_count. Format of the data is as follows:

Size Description

4 Offset of first mail name block

n Domain name (counted label format)

Each main name is stored in a block as follows:

Size Description

4 Offset of next mail name block

4 Time to live (seconds)

4 Preference value

4 Length of mail name

XOS Programmer's Guide
IPS Devices

444

n Mail name (counted label format)

The value returned is 0 if normal or a negative error code if an error
occured.

IPS_ADDPTR = 13 - Add pointer entry to cache

Data is specified in the buffer pointed to by qab_buffer1 with length speci-
fied in qab_count. Format of the data is as follows:

Size Description

4 Offset of first pointer name block

n Domain name (counted label format)

Each pointer name is stored in a block as follows:

Size Description

4 Offset of next mail name block

4 Time to live (seconds)

4 Reserved- must be 0

4 Length of pointer name

n Pointer name (counted label format)

The value returned is 0 if normal or a negative error code if an error
occured.

IPS_WAKEIPA = 14 - Wake up waiters for IP address

This function is intended for use when the resolver/server has received a
request for an A record (IP address) but has found a CNAME record in-
stead. Data is in a buffer pointed to by qab_buffer1 with length specified
by qab_count. It consists of a domain name in counted label format.

Value returned is 0 if normal or a negative error code if error. Note that if
the domain name is not in the cache, no error is reported but nothing is
done.

IPS_ERROR = 15 - Set error for domain name

This functions stores an entry in the DNS cache indicating an error for the
name specified. Everyone waiting on the name (for any record type) are
woke up. Data is in a buffer pointed to by qab_buffer1 with length speci-
fied by qab_count. Format of the data is as follows:

Device Dependent I/O Functions - Chapter 19
IPS Devices

445

Size Description

2 Time to live value

2 Error type: 0 = ER_NNNDF (name not defined)

1 = ER_NNSNA (network name server not available)

n Domain name (counted label format)

The value returned is 0 if normal or a negative error code if error. Note
that if the domain name is not in the cache, no error is reported but nothing
is done.

IPS_REMOVE = 16 - Remove entry from cache

Data is specified in the buffer pointed to by qab_buffer1 with length speci-
fied in qab_count. Format of the data is as follows:

Size Description

1 Length of domain name (n)

n Domain name (xxx.xxx.xxx)

The specified entry is removed from the DNS cache.

The value returned is 0 if normal or a negative error code if an error
occured.

XOS Programmer's Guide
IPS Devices

446

UDP Devices

There are no special device functions for UDP class devices.

Device Dependent I/O Functions - Chapter 19
UDP Devices

447

TCP Devices

There are no special device functions for TCP class devices.

XOS Programmer's Guide
TCP Devices

448

TLN Devices

There are no special device functions for TLN class devices.

Device Dependent I/O Functions - Chapter 19
TLN Devices

449

RCP Devices

There are no special device functions for RCP class devices.

XOS Programmer's Guide
RCP Devices

450

XFP Devcies

There are no special device functions for XFP class devices.

Device Dependent I/O Functions - Chapter 19
XFP Devcies

451

Chapter 20

svcLoadLKE System Call

Loadable kernel extensions or LKEs provide a means of adding executable code to
the XOS kernel after the system is running. Most LKEs provide support for various
hardware devices and generally fall into the catagory of items ususually refered to as
device drivers. The LKE mechanism is much more general than this, however, and
can be used to extend the kernel functionality in many ways.

A complete description of the XOS kernel environment where an LKE executes is
beyond the scope of this manual. It is described in the XOS Kernel Environment
manual. The mechanism used to load an LKE, however, is a system call and thus is
described here.

CALLING SEQUENCE:

XOSSVC svcSysLoadLke(struct lkeargs *args);

VALUE RETURNED:

The value returned 0 if normal or a negative error code if an error oc-
curred.

DESCRIPTION:

This system calls provides the means for loading LKEs (loadable kernel
extensions). This call is intended mainly for use by the LKELOAD utility
program, which does significant formating of the raw data to be loaded,
which normally comes from an executable image. It also resolves exported
symbols by directly reading the kernel’s internal symbol tables. Normally,
user programs should not execute this system call. It is considered an in-
ternal function any may change significantly in future versions of XOS.

The argument block pointed to by theargsargument has the following for-
mat:

svcLoadLKE System Call - Chapter 20

453

Name Size Set by Description

lla_state 4 Both State

Name Value

LLS_BEGIN 0

LLS_LOAD 1

LLS_WAIT 2

LLS_DONE 3

lla_value 4 System Returned value

lla_doffset 4 System Offset for data msect

lla_dsize 4 System Final size for data msect

lla_dcount 4 User Size of data msect data

lla_ddata 8 User Address of data for data msect

lla_coffset 4 System Offset for code msect

lla_csize 4 System Final size for code msect

lla_ccount 4 User Size of code msect data

lla_cdata 8 User Address of data for code msect

lla_init 4 User Offset of initialiation routine

lla_char 8 User Address of characteristics list

lla_xcount 4 User Size of exported symbol table data

lla_xdata 8 User Address of exported symbol table data

lla_soffset 4 User Offset for debugger symbol table msect

lla_ssize 4 System Final size for debugger symbol table msect

lla_scount 4 User Size of debugger symbol table data

lla_sdata 8 User Address of debugger symbol table data

The sequence to load an LKE is as follows:
1 - Read the .LKE file and determine the names of all referenced
common data areas.
2 - Initialize the argument block and issue the svcSysLoadLke call -
address of code msect data must be supplied - this call will always re-
turn without waiting.
3 - Use the relocation information returned to relocate the code and
data msects, fill in count and address fields in the argument block,
and issue the svcSysLoadLke call again (do not change the lla_state
field). This call may wait if IO is done by the LKE’s initialization
routine. The calling process is uninterruptable during this wait.
Warning: None of the arguments block fields marked s must be
modified after the initial SvcSysLoadLke call and before the second
svcSysLoadLke call returns.

XOS Programmer's Guide

454

The load may be aborted before the second svcSysLoadLke call by
setting the lla_init field to 0 and calling svcSysLoadLke.
Warning: The first call to svcSysLkeLoad obtains the exec memory
allocate resource, which is given up by the second call. Keeping this
resource for an extended time may cause many system operations to
hang, so the second call should be made as soon as possible! Also, if
the process terminates with the exec memory allocate resource, the
system will crash! The program must ensure that the user cannot ter-
minate it (by typing ^C, for example) between the two calls to
svcLoadLke,

svcLoadLKE System Call - Chapter 20

455

Appendix A

List of System Calls

This appendix provides a complete alphabetical list of the XOS system calls.

Name Description

svcIoCancel Cancel I/O Request

svcIoClose Close Device

svcIoControl I/O Request Control

svcIoDefLog Define Logical Name

svcIoDelete Delete File

svcIoDevParm Get or Set Device Parameters

svcIoDstName Build Destination Name

svcIoDupHandle Duplicate Device Handle

svcIoFindLog Find Logical Name

svcIoInBlock Input Block

svcIoInBlockP Input Block/Parameter List

svcIoInSingle Input Byte

svcIoInSingleP Input Byte/Parameter List

svcIoOpen Open Device or File

svcIoOutBlock Output Block

svcIoOutBlockP Output Block/Parameter List

svcIoOutSingle Output Byte

svcIoOutSingleP Output Byte/Parameter List

svcIoOutString Output String

List of System Calls - Appendix A

457

Name Description

svcIoOutStringP Output String/Parameter List

svcIoPath Set Default Path

svcIoQueue Queue I/O Request

svcIoRename Rename File

svcIoRun Run or load program

svcIoSetPos Set I/O Position

svcIoWait Wait Until I/O is Complete

svcMemBlkAlloc Allocate linear address space block

svcMemBlkChange Change size of linear address space
block

svcMemBlkFree Give up linear address space block

svcMemChange Change Memory Allocation

svcMemConvShr Convert to Shared Section

svcMemCreate Create New Segment

svcMemDebug Memory Debug Functions

svcMemDescAlloc Allocate segment descriptor

svcMemDescFind Find segment descriptor

svcMemDescFree Give up segment descriptor

svcMemDescRead Read segment descriptor

svcMemDescSet Set single segment descriptor value

svcMemDescWrite Write segment descriptor

svcMemDosSetup Set up DOS memory

svcMemLink Link Segment Selectors

svcMemLinkShr Link to Shared Section

svcMemMap Map Physical Section

svcMemMove Move Memory Section

svcMemPageType Change Memory Page Type

svcMemRemove Remove Segment

svcMemRmvMult Remove multiple segments

svcMemSegType Change Segment Type

XOS Programmer's Guide

458

Name Description

svcMemWPFunc Watch-point functions

svcMemWPSet Set watch-point

svcSchAlarm Alarm Functions

svcSchClrEvent Clear Event(s)

svcSchCtlCDone Report ctrl-C Processing Done

svcSchDismiss Dismiss Software Interrupt

svcSchExit Terminate Process

svcSchGetVector Get Software Interrupt Vector

svcSchIntrProc Interrupt Child Process

svcSchKill Terminate Any Process

svcSchMakEvent Create or remove event cluster

svcSchRelEvent Release event

svcSchResEvent Reserve event

svcSchSetEvent Set event

svcSchSetLevel Set Signal Level

svcSchSetVector Set Signal Vector

svcSchSpawn Create child process

svcSchSuspend Suspend Process

svcSchWaitProc Wait for Process to Terminate

svcSchWaitMEvent Wait for multiple events

svcSchWaitSEvent Wait for single event

svcScnMapBufr Map physical screen buffer

svcScnMaskWrt Masked write to display memory

svcScnTrans Transfer data for screen symbiont

svcScnUtil Screen symbiont utility functions

svcSysCmos CMOS memory function

svcSysDateTime Date and time functions

svcSysDefEnv Define environment string

svcSysErrMsg Get error message text

svcSysFindEnv Find enviroment string

List of System Calls - Appendix A

459

Name Description

svcSysLoadLke Load LKE

svcSysLog Place entry in system log file

svcTrmAttrib Get or set display attributes

svcTrmCurPos Get or set cursor position

svcTrmCurType Get or set cursor type

svcTrmDspPage Get or set current display page

svcTrmFunction General terminal functions

svcTrmGetAtChr Get attribute and character

svcTrmGSetCurPat Set graphics cursor pattern

svcTrmGSetCurCol Set graphics cursor colors

svcTrmGSetCurPos Set graphics cursor position

svcTrmLdStdFont Load standard font

svcTrmLdCusFont Load custom font

svcTrmMapScrn Map screen buffer

svcTrmSelFont Select font

svcTrmSetAtChr Set Attribute and Character

svcTrmSetChr Set character

svcTrmScroll Scroll window

svcTrmWrtInB Write to input buffer

XOS Programmer's Guide

460

Appendix B

System Error Codes

This appendix provides a complete listing and discussion of all error codes returned
by XOS system service calls. All system service calls and many C library functions
return one of the following error codes when an error is detected. All codes are
unique; their meaning is independent of the routine which indicated the error. In the
following alphabetic listing, each error code is specified as follows:

ERCOD = n - Message text

where ERCOD is the three to five character mnemonic for the error code, n is the nu-
meric value of the error code (decimal), and “Message text” is the standard message
text associated with the error (as returned by the svcSysErrMsg system call).

This line is followed by a discussion of the error condition indicated. This listing of
error codes is in alphabetical order by the five character error code mnemonic. Anu-
merically ordered list follows. Note that the symbol used to reference the value (for
both C and assembler) is obtained by prefixing the characters “ER_” before the the
error mnemonic. Thus the symbol for the ADRER error code is ER_ADRER.

The numeric listing includes just the value, mnemonic, and message text in tabular
format for quick reference given the numeric value of the error code.

System Error Codes - Appendix B

461

Alphabetical List of System Error Codes

ABORT = -150 - I/O operation aborted

An I/O operation was canceled after it was started. At least the amount of
data indicated by the qab_amount value was transferred, but more may
have been transferred.

ACT = -28 - Device is active

A function was specified for an active device which required that the de-
vice be inactive.

ADRER = -60 - Address out of bounds

An invalid address was specified as a parameter for a system service call.

ALDEF = -141 - Already defined

An attempt was made to define an entity (such as a shared memory seg-
ment or interprocess message name) with a name which was already in
use.

BDALM = -205 - Bad alarm handle

The alarm handle specified as an argument for the svcSchAlarm system
call did not correspond to an active alarm.

BDDBK = -56 - Bad disk block number

An illegal disk block number was specified.

BDDVH = -57 - Bad device handle

A device handle, which did not specify a currently open device or file, was
specified.

BDLNM = -99 - Bad logical name

The logical name specified contained illegal characters or was too long.

BDNAM = -18 - Bad process name

The process name specified contained illegal characters or was too long.

XOS Programmer's Guide
Alphabetical List of System Error Codes

462

BDPID = -19 - Bad process ID

A process ID was specified which did not correspond to a possible process
slot or to an existing process (if a reference to an existing process was re-
quired).

BDSPC = -29 - Bad device or file specification

An improperly formed device or file specification was specified.

BPIPE = -79 - Pipe error

An attempt was made to write to a pipe or to read from an empty pipe, the
other end of which had been closed.

BUSY = -40 - File or device is busy

An attempt was made to perform some operation on a file or device which
was busy for purposes of the attempted operation. For example, an attempt
was made to delete or supersede a file which is currently being super-
seded.

CAASP = -184 - Close action already specified

An attempt was made to specify a close action for a file using the
IOPAR_CLSACT I/O parameter when a close action had already been
specified for the file. Only one close action can be specified for an open
file.

CAERR = -185 - Close action error

An error occurred when attempting to perform the close action specified
for a file.

CANCL = -151 - I/O operation cancelled

An I/O operation was cancelled after it queued but before it was started.
No data was transferred.

CCMSS = -190 - Cannot change memory section size

An attempt was made to change the size of a memory section which has a
constant size. Shared sections and sections which map device buffers usu-
ally have constant size.

CDAAD = -161 - LKE common data area already defined

A common data area being defined by an LKE is already defined.

System Error Codes - Appendix B
Alphabetical List of System Error Codes

463

CDAND = -162 - LKE common data area not defined

A common data area referenced by an LKE was not defined when the
LKE was loaded. This error can only occur when loading an LKE.

CHARF = -16 - Illegal characteristic function

An illegal function was specified for a device or class characteristic.

CHARM = -17 - Required characteristic missing

A required device or class characteristic was not specified.

CHARN = -12 - Illegal characteristic name

The name specified for a device or class characteristic was illegal.

CHARS = -14 - Illegal characteristic value size

The value size specified for a device or class characteristic was illegal.

CHART = -15 - Illegal characteristic type

An illegal type was specified for a device or class characteristic.

CHARV = -13 - Illegal characteristic value

The value specified for a device or class characteristic was illegal.

CHNNA = -146 - DMA channel not available

The requested DMA channel is not available.

CLSAD = -109 - Device class already defined

The device class being added to the system is already defined.

CPDNR = -199 - Child process did not respond

The child process being created by a svcIoRun system call did not indicate
that it had finished loading its program within the time out period speci-
fied.

DATER = -46 - Data error

An unrecoverable data read error was encountered when attempting to in-
put data from a device.

XOS Programmer's Guide
Alphabetical List of System Error Codes

464

DATTR = -54 - Data truncated

Less data than expected was transferred to or from an I/O device. This er-
ror is only reported when this condition is due to an error condition. Read-
ing less data than requested from a file because the end of file was reached
does not produce this error, since this is a normal occurrence.

DEVER = -53 - Device error

An error was encountered when trying to access a device. This error gen-
erally indicates a failure of the device rather than the media, although this
is not always true.

DEVFL = -35 - Device full

A mass storage device has no space available.

DEVIU = -31 - Device in use

A single user device was specified which was already in use by a different
session process.

DFDEV = -37 - Different device for rename

An svcIoRename system service call specified a different device for the
old and new file specifications.

DIRFL = -43 - Directory full

An attempt was made to create a new file when no additional space was
available in the directory indicated (but not because the device was full).
This error can only occur when attempting to create a new file in the root
directory of an MS-DOS file system.

DIRNE = -44 - Directory not empty

An attempt was made to delete a non-empty directory.

DIRNF = -42 - Directory not found

A directory in the path specified for a file was not found.

DIRTD = -45 - Directory level too deep

A path to a file was specified with directories nested to more than the max-
imum directory nesting level. This limit is usually set to 7 directory levels.

System Error Codes - Appendix B
Alphabetical List of System Error Codes

465

DIVER = -201 - Divide error

The child process being created by an svcIoRun system call terminated
during initialization because of a divide error (divide by 0 or divide over-
flow).

DKCHG = -70 - Disk changed

The media for a removable media disk has been changed since a file was
opened.

DKRMV = -149 - Disk removed

A removable media disk was removed since a file was opened.

DLOCK = -80 - Deadlock condition

An operation was attempted which would likely result in a deadlock con-
dition.

DOSMC = -154 - DOS memory allocation data corrupted

The DOS memory block headers were corrupted, making it impossible to
allocate or deallocate memory in a DOS program.

DOSPB = -180 - Permanent DOS process is busy

An attempt was made to load a DOS program into a session’s permanent
DOS process when that process was not idle.

DPMIC = -207 - DPMI environment corrupted

The DPMI emulator was unable to perform the requested function because
the per-process data which describes the DPMI environment for the pro-
cess was not valid. This data is stored in user memory and can be cor-
rupted by a misbehaved user program.

DQUOT = -96 - Disk quota exceeded

A process attempted to allocate more disk space than allowed by its disk
quota.

DRFER = -90 - Directory block format error

When searching a directory for a file or for an empty slot, an illegal format
was encountered.

XOS Programmer's Guide
Alphabetical List of System Error Codes

466

DRRER = -91 - Directory block read error

When searching a directory for a file or for an empty slot, a read error oc-
curred.

DRWER = -92 - Directory block write error

A write error occurred when attempting to update a directory block.

DTINT = -157 - Data transfer interrupted

A multi-block disk data transfer was terminated early because of a disk er-
ror. This error code is used internally by the disk optimization routines and
should never be returned to a user program.

DUADF = -107 - Device unit already defined

The system device specified for an add unit function of the svcIoClass sys-
tem service call was already defined.

EOF = -1 - End of file

An attempt was made to read data past the end of a file. Note that this er-
ror is generally returned only when there is no data at all available before
the end of file. An attempt to read past the end of a file when some data is
available results in less data being read than was requested.

ERROR = -168 - Untranslatable/general error

This error code is reported for any error which is not covered by another
error code. It is also used when mapping an error from a remote system
and there is no direct mapping to a more specific error code.

EVNRS = -197 - Event is not reserved

The svcSchRelEvent system call was issued to attempt to release an event
which had not been reserved.

EVRES = -196 - Event is reserved

The svcSchResEvent system call was issued to attempt to reserve an event
which was already reserved.

EVSET = -198 - Event is set

An attempt was made to set an event using the svcSchSetEvent system call
which specified that the event should not be overwritten and the event was
already set.

System Error Codes - Appendix B
Alphabetical List of System Error Codes

467

FBFER = -81 - FIB format error

An illegal format was encountered in a file information block (XOS file
system).

FBPER = -82 - FIB pointer error

An invalid pointer was encountered in a file information block (XOS file
system).

FBRER = -83 - FIB read error

An error occurred while reading a file information block (XOS file sys-
tem).

FBWER = -84 - FIB write error

An error occurred while writing a file information block (XOS file sys-
tem).

FILAD = -41 - File access denied

An attempt was made to access a file which the user is not privileged to
access, which belongs to the user.

FILAF = -169 - File access failure

This error is returned for certain file access problems reported by foreign
remote systems.

FILCF = -170 - File creation failure

This error is returned for certain file creation problems reported by foreign
remote systems.

FILEX = -39 - File exists

An attempt was made to create a new file which specified that it should
fail if the file existed and the file did exist, or an attempt was made to re-
name a file to the name of an existing file.

FILNF = -38 - File not found

An attempt was made to open a file which does not exist, or one which
does exist that the user cannot access because it does not belong to the
user or to a member of his user group.

XOS Programmer's Guide
Alphabetical List of System Error Codes

468

FILRF = -172 - File rename failure

This error is reported for certain file rename problems reported by foreign
remote systems.

FILXF = -171 - File extend failure

This error is reported for certain file allocation problems reported by for-
eign remote systems.

FSINC = -97 - File system is inconsistent

The file system was found to be internally inconsistent. This is generally a
serious error which probably indicates that some data on the file system
will not be accessible and that continued use of the file system will proba-
bly result in additional data loss. If this error occurs, the file system should
be backed up immediately to recover as much data as possible and then it
should be reformatted.

FTPER = -186 - FAT block pointer error

An invalid value was found in a FAT block when accessing a file on a
DOS file structure.

FTRER = -187 - Error reading FAT block

An error occurred when reading a FAT block for a DOS file structure.

FTWER = -188 - Error writing FAT block

An error occurred when writing a FAT block for a DOS file structure

FUNC = -3 - Illegal function

A system service, which requires the specification of a function, was
called with an illegal function specified.

FUNCM = -4 - Illegal function for current mode

The function specified in a system service call is illegal for the current
mode of the device referenced.

HBFER = -85 - Home block format error

When attempting to mount a disk, an illegal format was found in the disk’s
home block (XOS file system) or boot block (DOS file system).

System Error Codes - Appendix B
Alphabetical List of System Error Codes

469

HBRER = -86 - Home block read error

When attempting to mount a disk, an error occurred when reading the
disk’s home block (XOS file system) or boot block (DOS file system).

IADEV = -69 - Illegal buffer address for device

The buffer specified for a data transfer had an illegal address. This gener-
ally occurs when a buffer which spans a page boundary is specified for a
physical device transfer.

IATTR = -94 - Illegal file attribute change

An illegal file attribute change was specified, such as attempting to set or
clear the directory attribute.

ICDEV = -68 - Illegal count for device

A transfer count was specified which was too large for the device.

IDEVC = -156 - Incorrect device class

The device class specified for the IOPAR_CLASS I/O parameter was in-
correct.

IDFER = -47 - ID field error

An unrecoverable error was encountered when attempting to read the ID
field of a disk.

IDREN = -159 - Invalid directory rename operation

An attempt was made to rename a directory into a directory which would
result in an invalid directory tree.

IDSPC = -139 - Illegal destination file specification

The destination file specification for the svcIoDstName system call is not
properly formed or is inconsistent with the source file specification and
the search mask specified.

IFDEV = -67 - Illegal function for device

A function was specified for a device which is illegal for the device.

IIFF = -62 - Illegal image file format

An image file which was specified to be loaded for execution was not a
properly formatted image file.

XOS Programmer's Guide
Alphabetical List of System Error Codes

470

IIFRD = -63 - Illegal relocation data in image file

An image file which was specified to be loaded for execution contained
improperly formatted relocation information.

IIFT = -61 - Illegal image file type

An image file which was specified to be loaded for execution was not of
the proper type.

IINUM = -138 - Illegal interrupt number

An illegal interrupt number was specified by a device driver when at-
tempting to initialize an interrupt vector.

ILLIN = -202 - Illegal instruction

The child process being created by an svcIoRun system call terminated
during initialization because an illegal instruction was executed.

ILSEK = -78 - Illegal seek function

A seek operation was requested for a device which does not support seeks.

IMEMA = -144 - Illegal memory address

The memory address specified is illegal.

INCMO = -181 - Incomplete output operation

An output operation was not completed.

ININU -163 - Interrupt number in use

A device driver attempted to initialize an interrupt vector which was al-
ready in use.

INVST = -194 - Invalid segment type

An attempt was made to illegally move or otherwise modify a memory
segment. This will occur if the segment was linked to an exec segment.

IOSAT = -158 - I/O saturation

An I/O operation was terminated because it was occurring at too high a
rate. This generally indicates a defective device interface which is not
clearing an interrupt request. The data transfer is terminated and the device
is reset to keep it from hanging the rest of the system.

System Error Codes - Appendix B
Alphabetical List of System Error Codes

471

IPDIR = -192 - Illegal pointer in directory

An illegal value was found in the pointer in a directory to the first cluster
of a file.

ISDIR = -76 - File is a directory

An operation was attempted on a file which is a directory, which is illegal
for directories.

LASNA = -34 - Linear address space not available

The linear address space requested is not available.

LKEAL = -160 - LKE already loaded

The LKE being loaded is already loaded.

LOCK = -183 - File record lock violation

An attempt was made to lock a file record which was already locked by
another user.

LSTER = -50 - Lost data error

Data was lost due to a device overrun or underrun.

MACFT = -24 - Memory address conflict

Memory is already allocated at the address which was specified for the al-
location of memory. This error is most often associated with the
svcMemChange and svcMemMap system service calls.

MAERR = -25 - Memory allocation error

User modifiable data which is required for memory allocation is inconsis-
tent. This error can only be returned by the routines which emulate DOS
memory allocation in virtual mode.

MATH = -257 - Math function error

An error was detected in one of the math library routines.

MEMLX = -208 - Memory limit exceeded

An attempt was made to allocate more memory than allowed for the pro-
cess.

XOS Programmer's Guide
Alphabetical List of System Error Codes

472

MPILK = -175 - Memory page is locked

An attempt was made to deallocate a memory page which was locked by
an active I/O request.

MSNPR = -193 - Msect is not private

A attempt was made to convert a memory section that was not a simple
private section to a shared section.

NACT = -72 - Device not active

The specified I/O request was not active on the device.

NCCLR = -126 = - Network connection cleared

The connection to a remote system was cleared by the remote system.

NCLST = -124 - Network connection lost

The connection to a remote system was terminated unexpectedly.

NCOMP = -142 - Not compatible

The requested operation was not compatible with the current state of the
device, network, or system.

NCONG = -120 - Network congestion

Network communication failed because of excessive congestion in the net-
work.

NCRFS = -127 - Network connection refused

An attempt to establish a connection with a remote system was refused by
the remote system.

NDOSD = -155 - No DOS I/O data block available

A DOS system call could not be performed because no DOS I/O data
block was available. These are dynamically allocated 256 byte blocks used
to store parameters for certain DOS system calls.

NEMA = -23 - Not enough memory available

There is not enough free memory available in the system to satisfy a re-
quest for the allocation of additional memory, or the request would cause
the amount allocated to the process to exceed the amount the process is al-
lowed. This error may be returned by any system service call which allo-

System Error Codes - Appendix B
Alphabetical List of System Error Codes

473

cates memory to provide temporary workspace as well as by the memory
system service calls.

NHSTA = -125 - Network host not available

The default network host for an XOS system configured as a workstation
was not available.

NILAD = -116 - Illegal network address

An illegal network address was specified. This generally means that the
external network complained about the format of the address.

NILPC = -118 - Illegal network protocol type

An illegal network protocol type was specified.

NILPR = -115 - Illegal network port number

An illegal network port number was specified.

NILRF = -117 - Illegal request format

This is a general error which means that the external network rejected
some request because it was not formatted correctly.

NIYT = -256 - Not implemented yet

The operation attempted is not implemented in the current version of
XOS.

NLKNA = -195 - Network link not available

An attempt was made to do I/O using a network interface which had been
disabled.

NMBTS = -137 - Name buffer is too small

The name buffer (as specified with the IOPAR_FILSPEC I/O parameter)
is not large enough to contain at least one file name when a repeated oper-
ation was specified.

NNAVL = -128 - Network not available

The connection to the network is not available.

NNOPC = -191 - No network protocol specified

A attempt was made to do I/O on a network device which requires specifi-
cation of a underlying protocol and no such protocol was specified for the

XOS Programmer's Guide
Alphabetical List of System Error Codes

474

device. An example of this would be to attempt output on an Ethernet IP
device for which no Ethertype value had been specified.

NNSER = -134 - Network name server error

A Domain Name Server indicated an unspecified error.

NNSNA = -131 - Network name server not available

A remote system cannot be accessed because no Domain Name Server
could be found to resolve its Domain Name.

NNSNC = -129 - Network name server not capable

A Domain Name Server refused a request with an indication that it was
not capable of performing the request.

NNSRF = -130 - Network name server refused request

A Domain Name Server refused a request. This often means that the sys-
tem is not privileged enough to make the request.

NNSRQ = -132 - Network name server bad format request

A Domain Name Server refused a request with an indication that the re-
quest had a bad format.

NNSRS = -133 - Network name server bad format response

The response received from a Domain Name Server had a bad format.

NOBUF = -27 - No system buffer available

This error is reported if a buffer cannot be obtained for the system internal
buffer pool. This error should not occur. If it does, it probably means that
the memory on a small system is heavily overcommitted.

NODCB = -26 - No disk cache buffer available

This error is reported if no disk cache buffer was available for use when
needed. Disk cache buffers are large buffers used internally by the kernel
for many purposes, but primarily for buffering disk data. This error should
not occur. If it does, the number of disk buffers specified in the system
startup file should be increased.

NOERR - 0 - No error indicated

An error code value of 0 is not used by the system. Such a value usually
indicates an error in the user program’s error handling routines, usually

System Error Codes - Appendix B
Alphabetical List of System Error Codes

475

that a normal return from a system service or library routine was taken to
be an error.

NOIN = -59 - Input not allowed

Input was attempted from a device that was opened without the O$IN bit
set or from a device which does not support input.

NOMEM = -140 - Memory not allocated

The memory section specified does not exist.

NOOUT = -58 - Output not allowed

Output was attempted to a device that was opened without the O$OUT bit
set or to a device which does not support output.

NOPAP = -143 - Printer is out of paper

A printer reported that it was out of paper.

NORSP = -55 - Device did not respond

A device did not complete the requested operation in a reasonable amount
of time.

NOSAD = -65 - No starting address specified in image file

An image file was specified to be loaded for execution which did not con-
tain a starting address specification.

NOSTK = -66 - No stack specified in image file

An image file was specified to be loaded for execution which did not con-
tain a stack address specification.

NPCIU = -119 - Network protocol type in use

The network protocol type specified was already in use by the interface.

NPERR = -112 - Network protocol error

This error reports a general network protocol error which does not fall into
a more specific error category.

NPRIU = -114 - Network port in use

The network port specified is in use.

XOS Programmer's Guide
Alphabetical List of System Error Codes

476

NPRNO = -113 - Network port not open

The network port specified is not open.

NRTER = -121 - Network routing error

The external network was unable to route a message to its destination.

NRTNA = -136 - Network router not available

No router is available when one is required to send a message to a remote
system which is on a different sub-net.

NSCLS = -108 - No such device class

The device class specified for the svcIoClass system service call did not
exist.

NSDEV = -30 - No such device

A device which does not exist in the system was specified or a device
which does exist but which the process is not privileged to use was speci-
fied.

NSEGA = -22 - No segment available

An attempt was made to create a segment when the process already has
the maximum allowable number of segments.

NSLP = -182 - Not a session level process

A process which was not a session level process was specified for a func-
tion which required a session level process.

NSNOD = -122 - No such network node

The remote network node specified did not respond or is not known to the
external network.

NSP = -20 - No such process

The requested process does not exist.

NSTYP = -145 - No such device type

The device type specified for the add unit function was not valid for the
device class to which a unit was being added.

System Error Codes - Appendix B
Alphabetical List of System Error Codes

477

NTDEF = -98 - Not defined

The logical name or environment string specified was not defined.

NTDIR = -75 - File is not a directory

A directory specified in a path for a file is not a directory.

NTDSK = -95 - Device is not a disk

A non-disk device was specified for a function which requires a disk.

NTFIL = -93 - Device is not file structured

A device which is not file structured was specified for an operation which
requires a file structured device.

NTIMP = -167 - Not implemented

The requested function is not implemented.

NTLCL = -179 - Not local

An operation which is valid only for a local device was requested for a re-
mote device.

NTLNG = -101 - Name is too long

The file, directory, or device name specified was too long.

NTRDY = -74 - Device not ready

The requested I/O operation could not be performed because the device
was not ready (printer was off line, floppy disk was not inserted, etc.).

NTTIM = -123 - Network time-out

A response to a network message was not received in a reasonable length
of time.

NTTRM = -77 - Device is not a terminal

A terminal specific operation was attempted on a device which was not a
terminal.

NWPA = -204 - No watchpoint available

An attempt was made to set a hardware watchpoint when all available
watchpoints were already in use. The 80386/80486 processors support a
maximum of four hardware watchpoints.

XOS Programmer's Guide
Alphabetical List of System Error Codes

478

NXERR = -135 - Network transmit error

An error occurred when attempting to transmit a network message.

PARMF = -10 - Illegal parameter function

An illegal function was specified for an I/O parameter.

PARMI = -6 - Illegal parameter index

The index value specified for an I/O parameter was illegal.

PARMM = -11 - Required parameter missing

A required I/O parameter was not specified.

PARMS = -8 - Illegal parameter size

The value size specified for an I/O parameter was illegal.

PARMT = -9 - Illegal parameter type

An illegal type was specified for an I/O parameter.

PARMV = -7 - Illegal parameter value

The value specified for an I/O parameter was illegal.

PDADF = -106 - Physical device already defined

The physical device specified for an add unit function of the svcIoClass
system service call was already defined as a system device.

PDNAV = -105 - Physical device not available

The physical device specified for an add unit function of the svcIoClass
system service call could not be found.

PDTYP = -104 - Physical device type incorrect

The physical device type was invalid for the function requested.

PRIV = -21 - Insufficient privilege

An attempt was made to perform an operation which required a privilege
which the process did not possess.

RANGE = -258 - Math function argument out of range

An argument to one of the math library routines was out of range.

System Error Codes - Appendix B
Alphabetical List of System Error Codes

479

RELTR = -64 - Relocation truncation in image file

An image file which was specified to be loaded for execution contained
relocation information which resulted in a relocated value being truncated.

RNFER = -49 - Record not found error

The requested record was not found on the indicated track on a disk.

SBFER = -87 - Storage allocation block format error

When attempting to mount a disk, a format error was found in a storage al-
location block (XOS file system) or file allocation table (DOS file sys-
tem).

SBRER = -88 - Storage allocation block read error

When attempting to mount a disk, a read error occurred while reading a
storage allocation block (XOS file system) or file allocation table (DOS
file system).

SBWER = -89 - Storage allocation block write error

When attempting to allocate space or close a file, a write error occurred
while writing a storage allocation block (XOS file system) or file alloca-
tion table (DOS file system) to the disk. If this error occurs, serious con-
sideration should be given to backing up the disk involved immediately,
since it probably indicates a serious problem which could compromise file
integrity.

SEKER = -48 - Seek error

An unrecoverable seek error was encountered when attempting to position
a disk to the desired track.

STKER = -200 - Stack error

The child process being created by an svcIoRun system call terminated
during initialization because of a memory fault when accessing the user
stack.

SVC = -2 - Illegal SVC function

An illegal system service function was specified.

TMALM = -206 - Too many alarms for process

An attempt was made to create more alarms than allowed for a process.

XOS Programmer's Guide
Alphabetical List of System Error Codes

480

TMDDV = -178 - Too many device units for device

There are too many device units declared for this device.

TMDVC = -111 - Too many devices open for device class

There are no more allocatable devices available in the device class.

TMDVP = -36 - Too many devices open for process

An attempt was made by a single process to open more devices than the
process device limit.

TMIOM = -173 - Too many I/O requests for memory page

A I/O operation would result in a single memory page being locked by
more than 255 different requests. It is highly unlikely that this error will
occur in normal system use.

TMIOP = -174 - Too many I/O request pointers

More than 8 contiguous groups of memory pages needed to be locked in
memory for an I/O operation. A memory referenced by an I/O operation
must be locked, including file specification strings, data buffers, I/O pa-
rameter lists, and string values of I/O parameters.

TMIOQ = -176 - Too many I/O requests queued

An svcIoQueue system call would exceed the request queue limit for the
I/O device.

TMPSS = -103 - Too many processes or shared segments in system

A attempt to create a child process was made when the system already
contained the maximum allowed number of processes.

TMRNC = -148 - Too many requests for network connection

A function was requested which exceeded the multiplexing capacity of a
network connection for the protocol being used.

TMRQB = -189 - Too many requests for buffer

Too many requests were made for access to a disk cache buffer. This error
is extremely unlikely, since the maximum number of requests is 65534 for
each buffer.

System Error Codes - Appendix B
Alphabetical List of System Error Codes

481

TMUDV = -177 - Too many users for device

A device has been opened too many times.

TMUSR = -102 - Too many users

An attempt was made to create a new user session which would exceed the
maximum number of user sessions allowed.

TRMNA = -210 - Terminal is not attached

An I/O operation was attempted on a terminal device which was not at-
tached to a physical serial port or console display.

UNXSI = -203 - Unexpected signal.

The child process being created by an svcIoRun system call terminated
during initialization because of an unexpected signal.

VALUE = -5 - Illegal value

An illegal value was given as an argument to a system call.

VECNS = -209 - Signal vector not set up

An attempt was made to request some action (such as setting up an alarm)
which required that a vector be set up and the vector was not set up.

WLDNA = -100 - Wild-card name not allowed

A wild-card file name was given where a fully specified file name was re-
quired.

WPRER = -52 - Write protect error

An attempt was made to write to a write protected device.

WRTER = -51 - Write fault error

A detectable error occurred while writing to a device.

XFRBK = -110 - Transfer blocked

A data transfer could not be completed.

XOS Programmer's Guide
Alphabetical List of System Error Codes

482

Numerical List of System Error Codes

Value Name Description

0 NOERR Normal return

-1 EOF End of file

-2 SVC Illegal SVC function

-3 FUNC Illegal function

-4 FUNCM Illegal function for current mode

-5 VALUE Illegal value

-6 PARMI Illegal parameter index

-7 PARMV Illegal parameter value

-8 PARMS Illegal parameter value size

-9 PARMT Illegal parameter type

-10 PARMF Illegal parameter function

-11 PARMM Required parameter missing

-12 CHARN Illegal characteristic name

-13 CHARV Illegal characteristic value

-14 CHARS Illegal characteristic value size

-15 CHART Illegal characteristic type

-16 CHARF Illegal characteristic function

-17 CHARM Required characteristic missing

-18 BDNAM Bad process name

-19 BDPID Bad process ID

-20 NSP No such process

-21 PRIV Not enough privilege

-22 NSEGA No segment available

-23 NEMA Not enough memory available

-24 MACFT Memory allocation conflict

-25 MAERR Memory allocation error

-26 NODCB No disk cache buffer available

System Error Codes - Appendix B
Numerical List of System Error Codes

483

Value Name Description

-27 NOBUF No system buffer available

-28 ACT Device is active

-29 BDSPC Bad device or file specification

-30 NSDEV No such device

-31 DEVIU Device in use

-32 DEVIO Device is open

-33 DEVNO Device not open

-34 LASNA Linear address space not available

-35 DEVFL Device is full

-36 TMDVP Too many devices open for process

-37 DFDEV Different device for rename

-38 FILNF File not found

-39 FILEX File exists

-40 BUSY File or device is busy

-41 FILAD File access denied

-42 DIRNF Directory not found

-43 DIRFL Directory full

-44 DIRNE Directory not empty

-45 DIRTD Directory level too deep

-46 DATER Data error

-47 IDFER ID field error

-48 SEKER Seek error

-49 RNFER Record not found error

-50 LSTER Lost data error

-51 WRTER Write fault error

-52 WPRER Write protect error

-53 DEVER Device error

-54 DATTR Data truncated

-55 NORSP Device did not respond

-56 BDDBK Bad disk block number

XOS Programmer's Guide
Numerical List of System Error Codes

484

Value Name Description

-57 BDDVH Bad device handle

-58 NOOUT Output not allowed

-59 NOIN Input not allowed

-60 ADRER Address error

-61 IIFT Illegal image file type

-62 IIFF Illegal image file format

-63 IIFRD Illegal relocation data in image file

-64 RELTR Relocation truncation in image file

-65 NOSAD No starting address specified in image file

-66 NOSTK No stack specified in image file

-67 IFDEV Illegal function for device

-68 ICDEV Illegal count for device

-69 IADEV Illegal buffer address for device

-70 DKCHG Disk changed

-71 RTOBG Record too big

-72 NACT Device not active

-73 FMTER Format error

-74 NTRDY Device not ready

-75 NTDIR File is not a directory

-76 ISDIR File is a directory

-77 NTTRM Device is not a terminal

-78 ILSEK Illegal seek function

-79 BPIPE Pipe error

-80 DLOCK Deadlock error

-81 FBFER FIB format error

-82 FBPER FIB pointer error

-83 FBRER FIB read error

-84 FBWER FIB write error

-85 HMFER HOM format error

-86 HMRER HOM read error

System Error Codes - Appendix B
Numerical List of System Error Codes

485

Value Name Description

-87 SBFER SAT format error

-88 SBRER SAT read error

-89 SBWER SAT write error

-90 DRFER Directory format error

-91 DRRER Directory read error

-92 DRWER Directory write error

-93 NTFIL Not a file structured device

-94 IATTR Illegal file attribute change

-95 NTDSK Device is not a disk

-96 DQUOT Disk quota exceeded

-97 FSINC File system is inconsistent

-98 NTDEF Not defined

-99 BDLNM Bad logical name

-100 WLDNA Wild card name not allowed

-101 NTLNG Name is too long

-102 TMUSR Too many users

-103 TMPSS Too many processes or shared segments in system

-104 PDTYP Physical device type incorrect

-105 PDNAV Physical device not available

-106 PDADF Physical device already defined

-107 DUADF Device unit already defined

-108 NSCLS No such device class

-109 CLSAD Device class already defined

-110 XFRBK Data transfer blocked

-111 TMDVC Too many devices open for device class

-112 NPERR Network protocol error

-113 NPRNO Network port not open

-114 NPRIU Network port in use

-115 NILPR Illegal port number

-116 NILAD Illegal network address

XOS Programmer's Guide
Numerical List of System Error Codes

486

Value Name Description

-117 NILRF Illegal request format

-118 NILPC Illegal network protocol type

-119 NPCIU Network protocol type in use

-120 NCONG Network congestion

-121 NRTER Network routing error

-122 NSNOD No such network node

-123 NTTIM Network time out

-124 NCLST Network connection lost

-125 NHSNA Network host not available

-126 NCCLR Network connection cleared

-127 NCRFS Network connection refused

-128 NNAVL Network not available

-129 NNSNC Network name server not capable

-130 NNSRF Network name server refused request

-131 NNSNA Network name server not available

-132 NNSRQ Network name server bad format request

-133 NNSRS Network name server bad format response

-134 NNSER Network name server error

-135 NXERR Network transmit error

-136 NRTNA Network router not available

-137 NMBTS Name buffer is too small

-138 IINUM Illegal interrupt number

-139 IDSPC Illegal destination file specification

-140 NOMEM No memory allocated

-141 ALDEF Already allocated

-142 NCOMP Not compatible

-143 NOPAP Printer is out of paper

-144 IMEMA Illegal memory address

-145 NSTYP No such device type

-146 CHNNA DMA channel not available

System Error Codes - Appendix B
Numerical List of System Error Codes

487

Value Name Description

-148 TMRNC Too many requests for network connection

-149 DKRMV Disk removed

-150 ABORT I/O operation aborted

-151 CANCL I/O operation cancelled

-154 DOSMC DOS memory allocation data corrupted

-155 NDOSD No DOS I/O data block available

-156 IDEVC Incorrect device class

-157 DTINT Data transfer interrupted

-158 IOSAT I/O saturation

-159 IDREN Invalid directory rename

-160 LKEAL LKE already loaded

-161 CDAAD LKE common data area already defined

-162 CDAND LKE common data area not defined

-163 ININU Interrupt number in use

-167 NTIMP Not implemented

-168 ERROR Unspecified general error

-169 FILAF Cannot access file

-170 FILCF Cannot create file

-171 FILXF Cannot extend file

-172 FILRF Cannot rename file

-173 TMIOM Too many I/O requests for memory page

-174 TMIOP Too many I/O request pointers

-175 MPILK Memory page is locked

-176 TMIOQ Too many I/O requests queued

-177 TMUDV Too many users for device

-178 TMDDV Too many device units for device

-179 NTLCL Not local

-180 DOSPB Permanent DOS process is busy

-181 INCMO Incomplete output operation

-182 NSLP Not a session level process

XOS Programmer's Guide
Numerical List of System Error Codes

488

Value Name Description

-183 LOCK File record lock violation

-184 CAASP Close action already specified

-185 CAERR Close action error

-186 FTPER FAT block pointer error

-187 FTRER Error reading FAT block

-188 FTWER Error writing FAT block

-189 TMRQB Too many requests for buffer

-190 CCMSS Cannot change memory section size

-191 NNOPC No network protocol specified

-192 IPDIR Illegal pointer in directory

-193 MSNPR Msect is not private

-194 INVST Invalid segment type

-195 NLKNA Network link not available

-196 EVRES Event is reserved

-197 EVNRS Event is not reserved

-198 EVSET Event is set

-199 CPDNR Child process did not respond

-200 STKER Stack error

-201 DIVER Divide error

-202 ILLIN Illegal instruction

-203 UNXSI Unexpected software interrupt

-204 NWPA No watchpoint available

-205 BDALM Bad alarm handle

-206 TMALM Too many alarms for process

-207 DPMIC DPMI environment corrupted

-208 MEMLX Memory limit exceeded

-209 VECNS Signal vector not set up

-210 TRMNA Terminal is not attached

-256 NIYT Not implemented yet

-257 MATH Math function error

System Error Codes - Appendix B
Numerical List of System Error Codes

489

Value Name Description

-258 RANGE Math function argument out of range

XOS Programmer's Guide
Numerical List of System Error Codes

490

Index

A

ABORT error. 462
ACT error . 462
ADRER errror . 462
ALDEF error . 462
ARP device characteristics. . .265 - 266, 323, 439

BADHDR . 265
BYTEIN. 265
BYTEINT . 265
BYTEOUT. 265
ETYPE . 265
PKTIN . 265 - 266
PKTOUT . 265 - 266
SNAPDEV 265 - 266

B

BDALM error . 462
BDDBK error . 462
BDDVH error . 462
BDLNM error . 462
BDNAM error . 462
BDPID error . 463
BDSPC error . 463
BPIPE error . 463
BUSY error . 463

C

CAASP error. 463
CAERR error . 463
CANCL error. 463
CCMSS error . 463

CDAAD error . 463
CDAND error . 464
CHARF error207 - 208, 464
CHARM error . 464
CHARN error . 464
CHARS error.173, 206, 464
CHART error. 464
CHARV error.184, 207, 464
CHNNA error . 464
CLSAD error. 464
CPDNR error . 464

D

DATER error. 464
DATTR error . 465
Defaults for programs. 7
Destination wild-card specifications 12
DEVER error . 465
DEVFL error . 465
Device characteristics

CLASS . 207, 294
INDEX. 207, 294
IOREG . 207, 294
TYPE . 207, 294

Device names. 8
DEVIU error . 465
DFDEV error. 465
DIRFL error. 465
DIRNE error . 465
DIRNF error . 465
DIRTD error . 465
DISK device characteristics209 - 225, 426

AVAIL. 209 - 210
BLOCKIN 209, 211, 222, 228, 231

Index

491

BLOCKOUT 209, 211, 229
BUFSIZE . 220, 296
BYTEIN. 209, 211, 230
BYTEOUT. 209, 211, 228
CBLKSZ . 209, 211
CBLOCKS. 209, 211
CCYLNS . 209, 211
CHEADS. 209, 212
CLASS . 209, 212
CLSSZ . 209, 212
CLUSTERS 209, 212
CONFIG . 220
CSECTS. 209, 212
DOSNAME . 213
DOSNAMEn 209, 213
DTHLIMIT. 209, 213
FATMODE 209, 213
FSTYPE . 209, 213

DOS12 214
DOS16 214
DOSEXT 214
DOSHP. 214
DSS12. 214
DSS12L 214
DSS16. 214
DSS16L 214
XOS . 214

HDATAERR 209, 214, 229
HDEVERR 209, 214, 229
HIDFERR 209, 214, 229
HOVRNERR. 209, 214, 229
HRNFERR 209, 214, 229
HSEEKERR 209, 214
HUNGERR 209, 214
IBLKSZ . 209, 215
IBLOCKS . 209, 215
ICYLNS. 209, 215
IHEADS . 210, 215
ISECTS. 210, 215
MCYLNS. 220, 296
MHEADS. 220 - 221, 296

MODEL. 210, 215, 229
MSECTS 220 - 221, 296
MSENSOR 210, 216
PARTN . 210, 216
PARTOFF . 210, 216
PROTECT 210, 216
RAMAX. 210, 216
REMOVE . 210, 216
REVISION 210, 216
ROOTBLK 210, 217
ROOTPROT 210, 217
ROOTSIZE 210, 217
SCSIDEV 222, 231, 298, 302
SCSILUN 222, 231, 298, 302
SCSITAR. 222, 231, 298, 302 - 303
SECPINT. 220 - 221, 296
SERIALNO 210, 217
SHRDELAY 210, 217
SHRFAIL. 210, 217
SHRRETRY 210, 217
TDATAERR. 210, 217, 230
TDEVERR 210, 217, 230
TIDFERR 210, 218, 230
TOVRNERR 210, 218
TRNFERR 210, 218
TSEEKERR 210, 218
UNITTYPE 210, 218
UXINTERR 220 - 221
VOLCDT. 210, 218
VOLEDT . 210, 218
VOLLABEL 210, 219
VOLMDT. 210, 219
VOLNAME 210, 219
VOLXDT . 210, 219
WTMAX . 210, 219

Disk names. 9
Disk partitions. 9
DIVER error . 466
DKCHG error . 466
DKRMV error . 466
DLOCK error . 466

XOS Programmer's Guide

492

DOSMC error . 466
DOSPB error . 466
DPMIC error . 466
DQUOT error . 466
DRFER error . 466
DRRER error . 467
DRWER error . 467
DTINT error . 467
DUADF error . 467

E

E3CA device characteristics
MEM . 262
THICK. 262

ENEA device characteristics
BOARD. 261
NE1000. 261
NE2000-16 . 261
NE2000-8 . 261

Environment strings . 6
ENWDA device characteristics

MEM . 260
EOF error . 467
ER_DSKFL error . 144
ER_PARMF error . .132, 140 - 141, 144, 150, 157
ER_PARMI error. 157
ER_PARMS . 129
ER_PARMV . 169
ER_PARMV error . 157
ER_PERMI error . 139
ER_PRIV error.145 - 146
ER_PRIV errror . 146
ERROR error . 467
Error messages462 - 482

ABORT . 462
ACT . 462
ADRER. 462
ALDEF . 462
BDALM . 462
BDDBK . 462

BDDVH. 462
BDLNM. 462
BDNAM. 462
BDPID. 463
BDSPC . 463
BPIPE. 463
BUSY . 463
CAASP . 463
CAERR. 463
CANCL . 463
CCMSS. 463
CDAAD. 463
CDAND. 464
CHARF . 464
CHARM . 464
CHARN. 464
CHARS. 464
CHART . 464
CHARV. 464
CHNNA. 464
CLSAD . 464
CPDNR. 464
DATER . 464
DATTR . 465
DEVER . 465
DEVFL . 465
DEVIU. 465
DFDEV . 465
DIRFL . 465
DIRNE . 465
DIRNF. 465
DIRTD. 465
DIVER. 466
DKCHG. 466
DKRMV. 466
DLOCK . 466
DOSMC . 466
DOSPB. 466
DPMIC . 466
DQUOT. 466
DRFER . 466

Index

493

DRRER. 467
DRWER . 467
DTINT. 467
DUADF . 467
EOF . 467
ERROR. 467
EVNRS . 467
EVRES . 467
EVSET . 467
FBFER . 468
FBPER . 468
FBRER . 468
FBWER. 468
FILAD . 468
FILAF . 468
FILCF . 468
FILEX . 468
FILNF . 468
FILRF . 469
FILXF . 469
FSINC. 469
FTPER . 469
FTRER . 469
FTWER. 469
FUNC . 469
FUNCM. 469
HBFER . 469
HBRER. 470
IADEV. 470
IATTR . 470
ICDEV. 470
IDEVC. 470
IDFER. 470
IDREN . 470
IDSPC. 470
IFDEV. 470
IIFF . 470
IIFRD . 471
IIFT . 471
IINUM . 471
ILLIN. 471

ILSEK . 471
IMEMA . 471
INCMO . 471
ININU . 471
INVST. 471
IOSAT. 471
IPDIR . 472
ISDIR . 472
LASNA . 472
LKEAL . 472
LOCK . 472
LSTER . 472
MACFT . 472
MAERR. 472
MATH . 472
MEMLX. 472
MPILK. 473
MSNPR. 473
NACT . 473
NCCLR . 473
NCLST . 473
NCOMP . 473
NCONG . 473
NCRFS . 473
NDOSD. 473
NEMA . 473
NHSTA . 474
NILAD. 474
NILPC. 474
NILPR. 474
NILRF . 474
NIYT . 474
NLKNA . 474
NMBTS. 474
NNAVL . 474
NNOPC. 474
NNSER. 475
NNSNA. 475
NNSNC. 475
NNSRF . 475
NNSRQ. 475

XOS Programmer's Guide

494

NOBUF. 475
NODCB. 475
NOERR. 475
NOIN. 476
NOMEM . 476
NOOUT. 476
NOPAP . 476
NORSP. 476
NOSAD. 476
NOSTK . 476
NPCIU . 476
NPERR. 476
NPRIU . 476
NPRNO. 477
NRTER . 477
NRTNA . 477
NSCLS . 477
NSDEV . 477
NSEGA. 477
NSLP . 477
NSNOD. 477
NSP . 477
NSTYP . 477
NTDEF . 478
NTDIR. 478
NTDSK . 478
NTFIL . 340, 478
NTIMP . 478
NTLCL . 478
NTLNG . 478
NTRDY . 478
NTTIM. 478
NTTRM. 478
Numerical list. 483 - 489
NWPA. 478
NXERR. 479
PARMF . 479
PARMI . 479
PARMM . 359, 479
PARMS. 479
PARMT . 479

PARMV. 359, 479
PDADF . 479
PDNAV . 479
PDTYP . 479
PRIV . 479
RANGE. 479
RELTR . 480
RNFER . 480
SBFER . 480
SBRER . 480
SBWER . 480
SEKER . 480
STKER . 480
SVC . 480
TMALM. 480
TMDDV. 481
TMDVC. 481
TMDVP. 481
TMIOM . 481
TMIOP . 481
TMIOQ . 481
TMPSS . 481
TMRNC. 481
TMRQB. 481
TMUDV. 482
TMUSR. 482
TRMNA . 481 - 482
UNSXI. 482
VALUE . 482
VECNS . 482
WLDNA. 482
WPRER . 482
WRTER . 482
XFRBK . 482

Error messages
NNSRS. 475

EVNRS error . 467
EVRES error. 467
EVSET error . 467
Extended virtual machine 3

Index

495

F

FBFER error . 468
FBPER error. 468
FBRER error. 468
FBWER error . 468
FDK device characteristics

CMPT . 223
CONDESP 223, 299
DATADEN. 223, 299
DOUBLE. 224
HIGH. 224
HLTIME. 223, 299
HUTIME . 223, 299
MOTIME . 223
MSTIME . 223, 299
PCAT . 223
SINGLE . 224
SRTIME . 223
TRKDEN. 223
XGAPLEN. 223

FILAD error. 468
FILAF error . 468
FILCF error. 468
File specifications . 10
FILEX error. 468
FILNF error. 468
FILRF error. 469
FILXF error . 469
Floppy disk device characteristics

UNITTYPE
DD3. 218, 300
DD5. 218, 300
DD8. 218, 300
HARD 218, 300
HD3 . 218
HD5. 218, 300

FSINC error . 469
FTPER error . 469
FTRER error. 469
FTWER error . 469

FUNC error. 469
FUNCM error . 469

H

HBFER error. 469
HBRER error . 470
Header files . 46

I

IADEV error . 470
IATTR error. 470
ICDEV error . 470
IDEVC error . 470
IDFER error . 470
IDREN error . 470
IDSPC error . 470
IFDEV error . 470
IIFF error . 470
IIFRD error . 471
IIFT error. 471
IINUM error. 471
ILLIN error . 471
ILSEK error. 471
IMEMA error . 471
INCMO error. 471
ININU error . 471
Interrupts

Hardware 25, 27, 29, 31, 33, 35, 37, 39
INVST error . 471
IOPAR_DEVSTS . 138
IOPAR_FILOPTN . 133
IOPAR_FILSPEC . 134
IOPAR_GLBID . 138
IOPAR_UNITSTS . 138
IOSAT error . 471
IPDIR error . 472
IPS device characteristics . . 267 - 272, 324, 440 -
446

XOS Programmer's Guide

496

ADJADDR. 267
ARPDEV. 267
BADHDR . 267
BYTEIN. 267
BYTEOUT. 267
CHKSUM . 267
CHKSUMH . 267
CLASS . 267
DLLTHL . 267
DOMAIN . 267
DRT1ADDR . 267
ETYPE . 267
HOSTDOWN . 267
IPADDR . 267
NAMESRVR . 267
NETMASK . 267
NODST. 267
NOMERGE. 267
NUMSNAP . 267
PKTIN. 267
PKTOUT. 267
PSLTDL . 267
PSLTMN . 267
RMTADDR . 267
RTPURGE . 267
RTREMOVE . 268
RTSIZE. 268
RTUSE . 268
SNAPDEV . 268
SUBMASK . 268

ISDIR error . 472

L

LASNA error . 472
LKEAL error . 472
LOCK error . 472
Logical names . 12
LSTER error . 472

M

MACFT error. 472
MAERR error . 472
MATH error. 472
MEMLX error . 472
Memory allocation .4 - 5
Memory sections (msects) 5
Memory segments . 5
Memory sharing . 6
MPILK error . 473
Msects (memory sections) 5
MSNPR error . 473

N

NACT error . 473
NCCLR error . 473
NCLST error . 473
NCOMP error . 473
NCONG error . 473
NCRFS error . 473
NDOSD error . 473
NEMA error. 473
NET device characteristics . . 255 - 262, 320 - 321,
437

BADPNT. 255
BCPKTIN . 255
BYTEIN. 255
BYTEOUT. 255
ICRC. 255
IFRAME . 255
ILOST . 255
INT . 255
IOVRRN . 255
NETADDR . 255
NOBFR. 255
NODST. 255
OCOL . 255
OCSEN. 255
OHTBT . 255

Index

497

OHUNG . 255
OOWC . 255
OUNDRN . 255
OXCOL. 255
PKTIN. 256
PKTOUT. 256

NHSNA error . 269
NHSTA error . 474
NILAD error . 474
NILPC error . 474
NILPR error . 474
NILRF error . 474
NIYT error. 474
NLKNA error . 474
NMBTS error . 474
NNAVL error . 474
NNOPC error . 474
NNSER error . 475
NNSNA error . 475
NNSNC error . 475
NNSRF error . 475
NNSRQ error . 475
NNSRS error . 475
NOBUF error . 475
NODCB error . 475
NOERR error . 475
NOIN error . 476
NOMEM error . 476
NOOUT error . 476
NOPAP error. 476
NORSP error . 476
NOSAD error . 476
NOSTK error . 476
NPCIU error . 476
NPERR error . 476
NPNRO error . 477
NPRIU error . 476
NRTER error. 477
NRTNA error. 477
NSCLS error. 477
NSDEV error . 477

NSEGA error . 477
NSLP error . 477
NSNOD error . 477
NSP error . 477
NSTYP error. 477
NTDEF error. 478
NTDIR error . 478
NTDSK error. 478
NTFIL error . 340, 478
NTIMP error . 478
NTLCL error . 478
NTLNG error. 478
NTRDY error. 478
NTTIM error . 478
NTTRM error . 478
NWPA error. 478
NXERR error . 479

O

O$APPEND . 341
O$CONTIG. 342
O$CREATE . 340
O$CRIT . 342
O$DFLTWILD. 341
O$DGIN . 344
O$DGOUT . 344
O$FAILEX . 340
O$FAPPEND . 342
O$FHANDLE . 341
O$FNR . 343
O$IN. 344
O$NODFWR . 342
O$NOINH. 343
O$NOMOUNT . 340
O$NORDAH. 342
O$NOWCL . 341
O$ODF. 340
O$OUT. 344
O$PARTIAL . 343
O$PHYS. 343

XOS Programmer's Guide

498

O$RAW . 343
O$REPEAT. 339
O$REQFILE . 340
O$SEQUENL . 342
O$TRUNCA . 340
O$TRUNCW. 341
O$UNQNAME . 341
O$XREAD . 343
O$XWRITE. 343

P

PARMF error. 479
PARMI error . 479
PARMM error . 359, 479
PARMS error . 479
PARMT error. 479
PARMV error. 359, 479
PCN device characteristics . .250 - 251, 432 - 435

INLBS . 250
INRBS. 250
PASSWORD. 250
PROGRAM. 250
SESSION . 251

PDADF error. 479
PDNAV error. 479
PDTYP error. 479
PPR device characteristics 254, 436

INT . 254
TIMEOUT . 254

PRIV error . 479
Process privileges19 - 20, 22

BYPASS . 21
CHNGUSER. 21
DETATCH. 21
IPM . 21
LKELOAD. 21
MEMLOCK . 21
NEWSES . 22
NOSWAP . 22
OPER . 22

READALL . 22
READKER . 22
READPHYS . 22
SCREENSYM. 22
SESENV. 22
SHAREDEV . 22
SYSENV. 23
SYSLOG. 23
USESYS. 23
WRITEKER. 23
WRITEPHYS . 23

Processes. 3

Q

QAB (Queued Argument Block) 332
qab_amount . 333
qab_buffer1 . 334
qab_buffer2 . 334
qab_count. 334
qab_error . 333
qab_handle. 334
qab_option . 334
qab_parmlist. 335
qab_vector . 334
QFNC$CHILDTERM 336
QFNC$DIO. 336
QFNC$SAMEPROC. 337
QFNC$WAIT . 336
QFNC_CLASSFUNC 353
QFNC_CLOSE. 362
QFNC_DELETE . 350
QFNC_DEVCHAR . 347
QFNC_DEVCMD.360 - 361
QFNC_DEVPARM . 345
QFNC_INBLOCK . 356
QFNC_OPEN. 338
QFNC_OUTBLOCK . 357
QFNC_OUTSTRING 358
QFNC_PATH . 352
QFNC_RENAME . 351

Index

499

QFNC_SPECIAL . 359
Queued Argument Block (QAB) 332

R

RANGE error . 479
RELTR error . 480
RNFER error . 480

S

SBFER error. 480
SBRER error . 480
SBWER error . 480
Scheduling . 4
SEKER error. 480
Shared memory . 6
SNAP device characteristics263 - 264, 438

BADPDU 263, 322 - 329
BYTEIN 263, 322 - 329
BYTEOUT. 263
NETDEV . 263 - 264
NODST . 263 - 264
PKTIN . 263 - 264
PKTOUT . 263 - 264
SAP . 263 - 264

SPL device characteristics . . 226 - 227, 301, 319,
427

CLSMSG . 226
CLSNAME . 226
CLSTIME. 226 - 227
SEQNUM. 226 - 227
SPLSPEC 226 - 227

STKER error. 480
SVC error . 480
svcIoCancel system call 364
svcIoClose system call 366
svcIoControl system call. 367
svcIoDefLog system call. 369
svcIoDelete system call 371

svcIoDevParm system call 372
svcIoDstname system call 373
svcIoDupHandle system call 374
svcIoFndLog system call 375
svcIoInBlock system call 377
svcIoInBlockP system call 378
svcIoInSingle system call 379
svcIoInSingleP system call 380
svcIoMakePipe system call 391
svcIoOpen system call 381
svcIoOutBlock system call 382
svcIoOutBlockP system call 383
svcIoOutSingle system call 384
svcIoOutSingleP system call 385
svcIoOutString system call 386
svcIoOutStringP system call. 387
svcIoPath system call. 388
svcIoQueue system call. 331 - 332, 334, 336, 338,
340, 342, 344, 346, 348, 350, 352, 354, 356, 358,
360, 362
svcIoRename system call. 390
svcIoSetPos system call. 395
svcIoWait system call 396
svcMemBlkAlloc . 94, 102
svcMemBlkChange . 95
svcMemBlkFree . 97
svcMemChange . 98
svcMemConvShr system call 100
svcMemCreate system call 103
svcMemDebug system call. 105
svcMemDescAlloc . 106
svcMemDescFind. 108
svcMemDescFree . 109
svcMemDescRead . 110
svcMemDescSet. 112
svcMemDescWrite . 113
svcMemDosSetup. 114
svcMemLink system call 116
svcMemLinkShr system call 117
svcMemMap system call. 118
svcMemMove system call. 119

XOS Programmer's Guide

500

svcMemNull system call 120
svcMemPageType system call 121
svcMemRemove system call 122
svcMemRmvMult system call 123
svcMemSegType system call 124
svcMemWPFunc system call 125
svcMemWPSet system call 126
svcSchAlarm system call 66
svcSchClrEvent system call 68
svcSchCtlCDone system call 69
svcSchDismiss system call 70
svcSchExit system call 71
svcSchGetVector system call 72
svcSchIntrProc system call 74
svcSchIRet system call 76
svcSchKill system call 77
svcSchMakEvent system call 78
svcSchRelEvent system call 79
svcSchResEvent system call 80
svcSchSetEvent system call 81
svcSchSetLevel system call 82
svcSchSetVector system call 83
svcSchSuspend system call 85, 88
svcSchWaitProc system call. 90
svcSchWtMEvent sysvem call 91
svcSchWtSEvent system call 92
svcSssClsAlm system call 418
svcSssDone system call. 419
svcSssGetMod system call 421
svcSssGetTdb system call 424, 453
svcSysCmos system call 48
svcSysDateTime system call 49
svcSysDefEnv system call 57
svcSysErrMsg system call 59
svcSysFindEnv system call 60, 62
svcSysLoadLke system call 63
svcSysLog system call 64
svcTrmAttrib system call. 398
svcTrmCurPos system call . . .399, 408 - 409, 411
svcTrmCurType system call 400
svcTrmDspPage system call 401

svcTrmFunction system call 402
svcTrmGetAtChr system call404 - 407
svcTrmMapScrn system call. 410
svcTrmScroll system call 414
svcTrmSetAtChr system call 412
svcTrmSetChr system call 413
svcTrmWrtInB system call 415

T

TC_BADSTK termination code. 34
TCP device characteristics. . .276 - 280, 326, 448

BADHDR . 276, 284
BYTEIN. 276, 284
BYTEOUT. 276, 284
CHKSUM . 276, 284
CLOST . 276, 284
FLOWOVR 276 - 277, 284, 286
MERGED 276, 278, 284, 286
NOACK. 276, 284
NODST. 276, 284
OOSMAX 276, 278, 284, 286
OOSMRGD. 276, 278, 284, 286
OOSNUM 276, 278, 284, 287
OUTSEQ . 276, 284
OUTWIN. 276, 284
PKTIN. 276, 284
PKTOUT. 276, 285
PSLTHL . 276, 285
PSLTMN . 276, 285
RETRY1 276, 279, 285, 288
RETRY2 277, 280, 285, 288
REXMIT . 277, 285
RSTRCVD 277, 285
RSTSENT. 277, 285
UNXFIN 277, 280, 285, 288

TLN device characteristics . . .281 - 283, 327, 449
BYTEIN. 281
BYTEOUT. 281
INLBS . 281 - 282
INRBS . 281 - 282

Index

501

OUTRBS . 281 - 282
PASSWORD 281 - 282
PROGRAM 281 - 282
PROTERR. 281 - 282
RETRY1 . 281, 283
RETRY2 . 281, 283
SESSION . 281, 283
TLNPORT. 281, 283

TMALM error . 480
TMDDV error . 481
TMDVC error . 481
TMDVP error . 481
TMIOM error. 481
TMIOP error . 481
TMIOQ error . 481
TMPSS error . 481
TMRNC error . 481
TMRQB error . 481
TMUDV error . 482
TMUSR error . 482
TRM (console) device characteristics

BELLFREQ. 241
BELLLEN . 242
CHAROUT . 242
CLASS . 242
CURFIX . 242
INLBS . 242
INRBHELD . 242
INRBLOST . 242
INRBPL. 243
INRBS. 243
INRBSL. 243, 313
IOUTFLOW. 243
KBCHAR. 244
KBTCHAR . 244
OUTFLOW . 244
PASSWORD. 244
PROGRAM. 244
SCSVTIME . 245
SCSVTYPE . 245
SESSION . 245

TRM (Console) device characteristics . . 241, 312
TRM (PCN) device characteristics 246, 314

INLBS . 246, 250
INRBS. 246, 250
PASSWORD. 246, 250
PROGRAM 246 - 247, 250
SESSION 246 - 247, 250

TRM (Serial) device characteristics 232 - 249, 305,
431, 436 - 439, 447 - 451
TRM (TLN) device characteristics 248, 315

INLBS . 248
INRBS. 248
PASSWORD. 248
PROGRAM 248 - 249
SESSION 248 - 249

TRM device characteristics
ACCESS. 232, 307, 309
BELLFREQ. 241, 312
BELLLEN . 241
CHARIN . 232, 241
CHAROUT 232, 241
CTS . 234 - 236, 238
CTSRTS 234 - 236, 238
CURFIX . 241
DBITS. 232
DSR. 234 - 236, 238
DSRDTR 234 - 236, 238
EVEN. 237 - 238
IDBITS . 232
IINFLOW. 232
IINRATE . 232
IMODEM. 232
INFLOW 232, 305, 307, 309, 320 - 321
INLBS. . 232, 241, 305, 307, 310, 312, 320 -
321
INRATE. 232
INRBHELD 232, 241
INRBLOST 232, 241
INRBPL. 232, 241
INRBS. 232, 241
INRBSL. 232, 241

XOS Programmer's Guide

502

INT . 232
INTRBS . 232
INTRHELD . 232
INTRLOST . 232
INTRPL. 232
INTRS. 232
INTRSL. 233
IOUTFLOW. 233, 241, 312
IOUTRATE . 233
IPARITY . 233
IRATE . 233
ISBITS . 233
KBCHAR. 233, 241, 312
KBTCHAR 241, 312
MARK . 237 - 238
MODEM . 233
MSGDST . 233
NONE. 234 - 238, 243 - 244
ODD . 237 - 238
OUTFLOW 233, 241, 312
OUTRATE. 233
OUTRS. 233
PARITY. 233
PASSWORD. 233, 241, 312
PROGRAM. 233, 241, 312
RATE . 233
RATEDET. 233
REV. 234 - 236, 238
REVCTS 234 - 236, 238
SBITS . 233
SCSVTIME . 241
SCSVTYPE . 241
SESSION 233, 241, 312
SPACE . 237 - 238
STSREG. 233
XON 234 - 236, 238, 243 - 244
XONXOFF 234 - 236, 238, 243 - 244

TRMNA error .481 - 482

U

UDP device characteristics. . .273 - 275, 325, 447
BADHDR . 273
BYTEIN. 273
BYTEOUT. 273
CHKSUM . 273
HOSTDOWN . 273
IBLXCD. 273
IPPROT . 273
IPSDEV . 273
NAMESRVR . 273
NODST. 273
PKTIN. 273
PKTOUT. 273
PSLTDL . 273
PSLTMN . 273
RTREMOVE . 273

UNXSI error . 482
User processes . 3

V

VALUE error . 482
VECNS error . 482

W

Wild-card file specifications 11
WLDNA error . 482
WPRER error . 482
WRTER error . 482

X

XFP device characteristics.289 - 291
XFRBK error. 482

Index

503

